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“INTRODUCTION

In this book, we present the basic principles that underlie the analysis and
design of digital communication systems. The subject of digital communica-
tioas involves the transmission of information in digital form from a source
that generates the information t0 one or more destinations. Of particular
importance in the analysis and design of communication systems are the
characteristics of the physical channels through which the information is
transmitted. The characteristics of the channel generally affect the design of
the basic building blocks of the communication system. Below, we describe the
elements of a communication system and their functions.

1-1 ELEMENTS OF A DIGITAL COMMUNICATION
SYSTEM :

Figure 1-1-1 illustrates the functional diagram and the basic elements of a
digital communication system. The source output may be either an analog
signal, such as audio or video signal, or a digital signal, such as the output of a
_teletype machine, that is discrete in time and has a finite number of output
characters. In a digital communication system, the messages produced by the
source are converted into a sequence of binary digits. Ideally, we shouid like to
represent the source output (message) by as few binary digits as possible. In
other words, we seek an efficient representation of the source output that
results in little or no redundancy. The process of efficiently converting the
output of either an analog or digital source into a sequence of binary digits is
called source encoding or data compression.

The sequence of binary digits from the source encoder, which we call the

1




2 DIGITAL COMMUNICATIONS

Information Source Channel Digital
source and encoder encoder modulator
input transducer
Channel
i
i
Owiput Output Source Channel Digital
signal ransducer decoder decoder demodulator

FIGURE 1-1-1 Basic elements of a digital communication system.

information sequence, is passed to the channel encoder. The purpose of the
channel encoder is to introduce, in a controlled manner, some redundancy in
the binary information sequence that can be used at the receiver to overcome
the effects of noise and interference encountered in the transmission of the
signal through the channel. Thus, the added redundancy serves to increase the
reliability of the received data and improves the fidelity of the received signal.
In effect, redundancy in the information sequence aids the receiver in decoding
the desired information sequence. For example, a (trivial) form of encoding of
the binary information sequence is simply to repeat each binary digit m times,
where m is some positive integer. More sophisticated (nontrivial) encoding
involves taking k information bits at a time and mapping cach k-bit sequence
into a unique n-bit sequence, called a code word. The amount of redundancy
introduced by encoding the data in this manner is measured by the ratio n/k.
The reciprocal of this ratio, namely k/n, is called the rate of the code or,
simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the
digital modulator, which serves as the interface to the communications channel.
Since nearly all of the communication channels encountered in practice are
capable of transmitting electrical signals (waveforms), the primary purpose of
the digital modulator is to map the binary information sequence into signat
waveforms. To elaborate on this point, let us suppose that the coded
information sequence is to be transmitted one bit at a time at some uniform
rate R bits/s. The digital modulator may simply map the binary digit O into a
waveform s,(f) and the binary digit 1 into a waveform s,(¢). In this manner,
each bit from the channel encoder is transmitted separately. We call this binary
modulation. Alternatively, the modulator may transmit b coded information
bits at a time by using M = 2° distinct waveforms 5{8),i=0,1,...,M—~1, one
waveform for each of the 2° possible b-bit sequences. We call this M-ary
modulation (M >2). Note that a new b-bit sequence enters the modulator
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every b/R seconds. Hence, when the channel bit rate R is fixed, the amount of
time available to transmit one of the M waveforms corresponding to a b-bit
sequence is b times the time period in a system that uses binary modulation.

The communication channel is the physical medium that is used to send the
signal from the transmitter to the receiver. In wireless transmission, the
channel may be the atmosphere (free space). On the other hand, telephone
channels usually employ a variety of physical media, including wire lines,
optical fiber cables, and wireless (microwave radio). Whatever the physical
medium used for transmission of the information, the essential feature is that
the transmitted signal is corrupted in a random manner by a variety of possible
mechanisms, such as additive thermal noise generated by electronic devices,
man-made noise, ¢.g., automobile ignition noise, and atmospheric noise, e.g.,
electrical lightning discharges during thunderstorms.

At the receiving end of a digital communications system, the digital
demodulator processes the channel-corrupted transmitted waveform and re-
duces the waveforms to a sequence of numbers that represent estimates of the
transmitted data symbols (binary or M-ary). This sequence of numbers is
passed to the channel decoder, which attempts to reconstruct the original
information sequence from knowledge of the code used by the channel
encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the
frequency with which errors occur in the decoded sequence. More precisely,
the average probability of a bit-error at the output of the decoder is a measure
of the performance of the demodulator-decoder combination. In general, the
probability of error is a function of the code characteristics, the types of
waveforms used to transmit the information over the channel, the transmitter
power, the characteristics of the channel, i.e., the amount of noise, the nature
of the interference, etc., and the method of demodulation and decoding. These
items and their effect on performance will be discussed in detail in subsequent
chapters.

As a final step, when an analog output is desired, the source decoder accepts
the output sequence from the channel decoder and, from knowledge of the
source encoding method used, attempts to reconstruct the original signal from
the source. Due to channel decoding errors and possible distortion introduced
by the source encoder and, perhaps, the source decoder, the signal at the
output of the source decoder is an approximation to the original source output.
The difference or some function of the difference between the original signal
and the reconstructed signal is a measure of the distortion introduced by the
“digital communication system.

1-2 COMMUNICATION CHANNELS AND THEIR
' CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides
the connection between the transmitter and the receiver. The physical channel
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may be a pair of wires that carry the electrical signal, or an optical fiber that
carries the information on a modulated light beam, or an underwater ocean
channel in which the information is transmitted acoustically, or free space over
which the information-bearing signal is radiated by use of an antenna. Other
media that can be characterized as communication channels are data storage
media, such as magnetic tape, magnetic disks, and optical disks.

One common problem in signal transmission through any channel is additive
noise. In general, additive noise is generated internally by components such as
resistors and solid-state devices used to implement the communication system.
This is sometimes called thermal noise. Other sources of noise and interference
may arise externally to the system, such as interference from other users of the
channel. When such noise and interference occupy the same frequency band as
the desired signal, its effect can be minimized by proper design of the
transmitted signal and its demodulator at the receiver. Other types of signal
degradations that may be encountered in transmission over the channel are
signal attenuation, amplitude and phase distortion, and multipath distortion.

The effects of noise may be minimized by increasing the power in the
transmitted signal. However, equipment and other practical constraints limit
the power level in the transmitted signal. Another basic limitation is the
available channel bandwidth. A bandwidth constraint is usually due to the
physical limitations of the medium and the electronic components used to
implement the transmitter and the receiver. These two limitations result in
constraining the amount of data that can be transmitted reliably over any
communications .channel as we shall observe in later chapters. Below, we

describe some of the important characteristics of several commaunication
channels.

Wireline Chammels The telephone network makes extensive use of wire
lines for voice signal transmission, as well as data and video transmission.
Twisted-pair wire lines and coaxial cable are basically guided electromagnetic
channels that provide relatively modest bandwidths. Telephone wire generally
used to connect a customer to a central office has a bandwidth of several
hundred kilohertz (kHz). On the other hand, coaxial cable has a usable
bandwidth of several megahertz (MHz). Figure 1-2-1 illustrates the frequency
range -of guided electromagnetic channels, which include waveguides and
optical fibers.

Signals transmitted through such channels are distored in both amplitude
and phase and further corrupted by additive noise. Twisted-pair wireline
channels are also prone to crosstalk interference from physically adjacent
channels. Because wireline channels carry a large percentage of our daily
communications around the country and the world, much research has been
performed on the characterization of their transmission properties and on
methods for mitigating the amplitude and phase distortion encountered in
signal transmission. In Chapter 9, we describe methods for designing optimum
transmitted signals and their demodulation: in Chapters 10 and 11, we
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consider the design of channel equalizers that compensate for amplitude and
phase distortion on these channels.

Fiber Optic Chanmels Optical fibers offer the communications system
designer a channel bandwidth that is several orders of magnitude larger than
coaxial cable channels. During the past decade, optical fiber cables have been
developed that have a relatively low signal attenuation, and highly reliable
photonic devices have been developed for signal generation and signal
detection. These technological advances have resulted in a rapid deployment of
optical fiber channels, both in domestic telecommunication systems as well as
for trans-Atlantic and trans-Pacific communications. With the large bandwidth
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available on fiber optic channels, it is possible for telephone corgpaniqs to offer
subscribers a wide array of telecommunication services, including voice, data,

facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a .

light source, either a light-emitting diode (LED) or a laser. Informa.tion is
transmitted by varying (modulating) the intensity of the light source with th'e
message signal. The light propagates through the fiber as a light wave and is
amplified periodically (in the case of digital transmission, it is detected and
regenerated by repeaters) along the transmission path to compensate for signal
attenuation. At the receiver, the light intensity is detected by a photodiode,
whose output is an electrical signal that varies in direct proportion to the
power of the light impinging on the photodiode. Sources of noise in fiber optic
channels are photodiodes and electronic amplifiers.

It is envisioned that optical fiber channels will replace nearly all wireline
channels in the telephone network by the turn of the century.

Wireless Electromagnetic Channels In wireless communication systems,
electromagnetic energy is coupled to the propagation medium by an antenna
which serves as the radiator. The physical size and the configuration of the
antenna depend primarily on the frequency of operation. To obtain efficient
radiation of electromagnetic energy, the antenna must be longer than 3 of the
wavelength. Consequently, a radio station transmitting in the AM frequency
band, say at f =1 MHz (corresponding to a wavelength of A = c/fe =300m),
requires an antenna of at least 30m. Other important characteristics and
attributes of antennas for wireless transmission are described in Chapter 5.

Figure 1-2-2 illustrates the various frequency bands of the electromagnetic
spectrum. The mode of propagation of electromagnetic waves in the atmo-
sphere and in free space may be subdivided into three categories, namely,
ground-wave propagation, sky-wave propagation, and line-of-sight (LOS)
propagation. In the VLF and audio frequency bands, where the wavelengths
exceed 10 km, the earth and the ionosphere act as a waveguide for electromag-
netic wave propagation. In these frequency ranges, communication signals
practically propagate around the globe. For this reason, these frequency bands
are primarily used to provide navigational aids from shote to ships around the
world:-- The channel bandwidths available in these frequency bands are
relatively small (usvally 1-10% of the center frequency), and hence the
information that is transmitted through these channels is of relatively slow
speed and generally confined to digital transmission. A dominant type of noise
at these frequencies is generated from thunderstorm activity around the globe,
especially in tropical regions. Interference results from the many users of these
frequency bands.

Ground-wave propagation, as illustrated in Fig. 1-2-3, is the dominant mode
of propagation for frequencies in the MF band {0.3-3MHz). This is the
frequency band used for AM broadcasting and maritime radio broadcasting. In
AM broadeasting, the range with groundwave propagation of even the more
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FIGURE 1-2-3  llustration of ground-wave propagation.
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Tlustration of sky-wave propagation.

powerful radio stations is limited to about 150km. Atmospheric noise,
man-made noise, and thermal noise from electronic components at the receiver
are deminant disturbances for signal transmission in the MF band.

Sky-wave propagation, as illustrated in Fig. 1-2-4 results from transmitted
signals being reflected (bent or refracted) from the ionosphere, which consists
of several layers of charged particles ranging in altitude from 50 to 400 km
above the surface of the earth. During the daytime hours, the heating of the
lower atmosphere by the sun causes the formation of the lower layers at
altitudes below 120km. These lower layers, especially the D-layer, serve to
absorb frequencies below 2 MHz, thus severely limiting sky-wave propagation
of AM radio broadcast. However, during the night-time hours, the electron
density in the lower layers of the ionosphere drops sharply and the frequency
absorption that occurs during the daytime is significantly reduced. As a
consequence, powerful AM radio broadcast stations can propagate over large
distances via sky wave over the F-layer of the ionosphere, which ranges from
140 to 400 km above the surface of the earth.

A frequently occurring problem with electromagnetic wave propagation via
sky wave in the HF frequency range is signal multipath. Signal multipath occurs
when the transmitted signal arrives at the receiver via multiple propagation
paths at different delays. It generally results in intersymbol interference in a
digital communication system. Moreover, the signal components arriving via
different propagation paths may add destructively, resulting in a phenomenon

. called signal fading, which most people have experienced when listening to a

distant radio station at night when sky wave is the dominant propagation
mode. Additive noise at HF is a combination of atmospheric noise and thermal
noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above
approximately 30 MHz, which is the end of the HF band. However, it is
possible to have ionospheric scatter propagation at frequencies in the range
3060 MHz, resulting from signal scattering from the lower ionosphere. It is
also possibie to communicate over distances of several hundred miles by use of
tropospheric scattering at frequencies in the range 40-300 MHz. Troposcatter
results from signal scattering due to particles in the atmosphere at altitudes of
10miles or less. Generally, ionospheric scatter and tropospheric scatter
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involve large signal propagation losses and require a large amount of
transmitter power and relatively large antennas. - ]

Frequencies above 30 MHz propagate through the ionosphere wnt_h r.eia-
tively little loss and make satcllite and extraterrestrial communications
possible. Hence, at frequencies in the VHF band and higher, the -dominant
mode of electromagnetic propagation is line-of-sight (LOS) propagation. For
terrestrial communication systems, this means that the transmitter and receiver
antennas must be in direct LOS with relatively little or no obstruction. For this
reason, television stations transmitting in the VHF and UHF frequency bands
mount their antennas on high towers to achieve a broad coverage area.

In general, the coverage area for LOS propagation is kimited by the
curvature of the earth. If the transmitting antenna is mounted at a height & m
above the surface of the earth, the distance to the radio horizon, assuniing no
physical obstructions such as mountains, is approximately o = V154 km. For
example, a TV antenna mounted on a tower of 300 m in height provides a
coverage of approximately 67 km. As another examplé, microwave radic relay
systems used extensively for telephone and video transmission at frequencies
above 1 GHz have antennas mounted on tall towers or on the top of tall
buildings.

The dominant noise limiting the performance of 2 communication system in
VHF and UHF frequency ranges is thermal noise generated in the receiver
front end and cosmic noise picked up by the antenna. At frequencies in the
SHF band above 10 GHz, atmospheric conditions play a major role in signal
propagation. For example, at 10 GHz, the attenuation ranges from about
0.003 dB/km in light rain to about 0.3 dB/km in heavy rain. At 100 GHz, the
attenuation ranges from about 0.1dB/km in light rain to about 6 dB/km in
heavy rain. Hence, in this frequency range, heavy rain introduces extremely
high propagation losses that can result in service outages (total breakdown in
the communication system).

At frequencies above the EHF (extremely high frequency) band, we have
the infrared and visible light regions of the electromagnetic speétrum, which
can be used to provide LOS optical communication in free space. To date,
these frequency bands have been used in experimental communication
systems, such as satellite-to-satellite links.

Underwater Acoustic Channels Over the past few decades, ocean ex-
ploration activity has been steadily increasing. Coupled with this increase is the
need to transmit data, coliected by sensors placed under water, to the surface
of the ocean. From there, it is possible 1o relay the data via a satellite to a data
collection center.

Electromagnetic waves do not propagate over long distances under water
except at extremely low frequencies. However, the transmission of signals at
such low frequencies is prohibitively expensive because of the large and
powerful transmitters required. The attenuation of electromagnetic waves in
water can be expressed in terms of the skin depth, which is the distance a signal
is attenuated by 1/e. For sea water, the skin depth 8 =250/V7, where f is




