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Preface

This volume, Volume D 1, begins with a general survey of the complexes of scandium, yttrium,
and the rare earth elements lanthanum-lutetium. The pertinent properties of the ions are discussed
first, primarily as they are related to atomic and ionic ground-state electronic configurations. Factors
affecting complexations are discussed, and general properties of complex species, specifically
molecular geometry, coordination number, thermodynamic and kinetic stability, and bonding, are
then described.

‘In subsequent chapters, complexes are grouped into major classifications by donor atom type.
Within each major classification, sub-classes are used to describe the species formed by specific
donor ions or molecules. Where thermodynamic data, formation constants, and/or kinetic data are
available for the complexation reactions, these are presented before the syntheses and properties
of isolated complexes.

Chapter 2 describes complexes with nitrogen donor ligands. The majority of these species are
derived from the terpositive ions (M'''). Where M'' or Ce'Y complexes have been reported for a
specific ligand, they are described after the M!'!' complexes. The ligands include ammonia,
hydrazine, amines, polyamines, and heterocyclic amines and polyamines. Both solution studies and
the syntheses and properties of isolated compounds are described.

Chapter 3 describes some of the complexes derived from ligands that contain both nitrogen
and oxygen donor atoms. Examples of ligands of this type are amino acids, amine-N-polycarboxylic
acids, aromatic and N-heterocyclic amine carboxylic acids, hydrazinecarboxylic acids, hydrazine-
polycarboxylic acids. Most of these complexes have been studied in solution. A limited number
have been isolated and investigated.

This volume is supplemented by a formula index listing all ligands and their molecular formulas.

The remaining complexes containing ligands with both nitrogen and oxygen donor atoms will
be discussed in Volume D 2. Complexes containing ligands with only oxygen donor atoms and with
other donor atoms and the organometallic compounds of the rare earth elements will be described
in Volumes D 2 and D 3. ) :

Tempe, Arizona, USA Therald Moeller
Frankfurt/Main
December 1979 Edith Schleitzer-Rust
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1 Introduction

Therald Moeller

Department of Chemistry, Arizona State University
Tempe, Arizona, USA

1.1 Rare Earth Element lons. General Properties

The rare earth elements, including scandium and yttrium, are best characterized and distinguished
from the other elements in terms of their atomic and ionic ground-state electronic configurations
(Table 1/1) and those properties that can be related, directly or indirectly, to these configurations.
Properties pertinent to the complexation process and the characteristics of complexes include
oxidation states, crystal radii, energy states, magnetic and spectroscopic behavior, bonding,
coordination number and molecular geometry, and thermodynamic and kinetic stability.

Gmelin Handbuch 1
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Table 1/1
Electron configurations and levels of the lanthanide atoms and ions in their ground states,

Atomic M Mm® M M2+ M3+
No.

21 Sc 3d? 4s2 2Dy, 3d° 'S,
39 Y 4d? 5s2 2Ds, 4do 1S,
57 La 5d 6s2 2Ds, 5d2  3F, 5d 2Ds, 5p6 1S,
58 Ce 4f 5d 6s2 'Gg 4f  5d2  4H;, 42 3H, af | 2F;),
59 Pr 4f? 6s2 41y, 413 6s (%2 '/2)a A s, 4f2  3H,
60 Nd 4f4 6s2 51, 4f4 6s (4, /), 4f4 51y a4y,
61 Pm 4fs 6s2 6H;,  4f5 6s 7H, afs SHs,, af4 5|,
62 Sm 4fe 6s2 7F, 4fe 6s &F./, 4f6 Fo afs  oH;,
63 Eu 417 6s2 887,  4f7 6s °S; 4f7 887, afe  7F,
64 Gd 4f7 5d 6s2 °D; 4i7 5d 6s '°Ds), 4f7 5d °Q; 4f7  8s;,
65 Tb afe 6s2 GH;,,  4f° 6s 7Hg 4t 5Hy,,  4ff 7Fg
66 Dy 4f10 6s2 Slg 4f10  Bs (8,13, 4F10  Sig 4f>  OH;,,
67 Ho 411 6s2 4l3,,  4f 6s (15/5 /1) 4 455, 4f10 5|y
68 Er 4f12 6s2 3Hg 4112 6s (6, '/z)wsy, 412 3Hg a4y,
69 Tm af13 6s2 2F;,  4f13  Bs (7/5 '/2)a 43 2F;, 412 3Hg
70 Yb 4f14 6s2 1S, 4f14 6s 28y, 41 15, 4f13 27,
71 Lu 4f14 5d 6s2 2D;;, 4f'4  6s2'S, 4§14 Bs 28, 4f14 1S,

The ground-state atomic configurations of the scandium, yttrium, and lanthanum atoms are of
the type [noble gas core] (n—1)d'ns2 (n=4 for Sc, 5 for Y, 6 for La), those of the other atoms
amount essentially to the configuration [La]4f", with n=1 to 14 [1]. The 4f orbitals are com-
paratively well-buried, and thus substantially shielded from external influences. The ubiquitous
+3 state characteristic of the vast majority of the compounds formed by these elements represents
a noble-gas core in the ions Sc3*, Y3+, and La3*, but with 4f electrons present in the other species.
This preference of +3 state is probably less a consequence of ground-state atomic configurations
than of a, perhaps fortuitous, balance between ionization energies and either crystal or solvation
energies [2]. The +2 state, although noted for all of the elements in solid binary halides, is limited
in solution and in complexes, as a consequence of ready oxidation to the +3 state, to Eu and Yb.
The +4 state is limited, as a consequence of ready reduction to the +3 state, to Ce. Thus, the
complex ions and compounds are, with but few exceptions, those derived from the M3+ jons. In the
chapters that describe the various types of complexes, those derived from M3+, M2+, and M4+ are
discussed separately for each ligand.

Due to the imperfect shielding from nuclear attraction of each 4f electron by other 4f electrons
the ionic size in a given oxidation state decreases with increasing nuclear charge in the region Z=57
to 71 (lanthanide contraction [3] (Table 1/2)). For atomic and ionic radii see also Gmelin Handbuch
" Seltenerdelemente’” B 4, 1976, p. 420. A consequence of this contiaction is that the radius of the
Ho3 ion is the same as that of the Y3+ ion. However, the Sc3* ion is significantly smaller than even the
Lu3' ion. Paralleling decrease in radii of the M3+ jons are many increases in thermodynamic stabilities
of complexes, incieases in covalency in bonding, and decreases in coordination number.

The cffective shielding of 4f electrons from external fields by the 5s25p® orbital arrangement
results in minimal effects on the states the 4f" configurations by the surroundings of the M3+ ions.
For a given ion, these effects are thus essentially the same for nearly all compounds of a given ion,
both in solution and in the crystalline state [6]. The energy states of the 4f configurations are use-
fully approximated by the Russell-Saunders scheme, and the spin-orbit coupling constants are com-
paratively large, see Gmelin Handbuch * Seltenerdelemente” B 4, 1976, p. 131/43, 139. Thus, nearly
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every M3+ jon (M =La-Lu) is characterized by a ground state of single J value and the first
excited state which is essentially unpopulated except at very high temperatures. The Sm3+ and Eu3*
ions, however, are different in that the first excited state, and for the Eu3* ion even the second and
third excited states, are close to the ground state and somewhat populated at room temperature.

Properties that are specifically affected are paramagnetism and the absorption and emission of
radiant energy. The ions Sc3+*, Y3+, La3+, Ce4+, and Lu3+ are diamagnetic, corresponding to the
absence of unpaired electrons. All of the other ions are paramagnetic. However, the spin-only
calculation of magnetic moments applicable to the 3d cations is not applicable to these ions. Detailed
information is given by Taylor and Darby [7]. That the measured magnetic moments of a number of
the complexes discussed in subsequent chapters agree very well with those for the free M3* ions is
indicative of both minimal covalence and lack of participation of 4f electrons in bonding.

Table 1/2
Metallic and crystal radii (A).

Nuclear Symbol Metallic Crystal Radius [5]
Charge Radius [4] +2 +3 +4
21 Sc 1.61 0.73

39 Y 1.78 0.893

57 La 1.87 1.061

58 Ce 1.83 1.034 080
59 Pr 1.82 1.013 0.78
60 Nd 1.81 0.995

61 Pm ca. 1.81 0.979

62 Sm 1.80 0.964

63 Eu 1.99 117 0.95

64 Gd 1.79 0.938

65 Tb 1.76 0.923 0.76
66 Dy 1.75 0.908

67 Ho 1.74 0.894

68 Er 173 0.881

69 Tm ca. 1.73 0.869

70 Yb 1.94 0.93 0.858

71 Lu 1.72 0.848

The ions Sc?*, Y* , La3*, and Lu®* have no abs_orption bands in the ultraviolet, visible, or infrared
regions and are colorless both in crystals and in solution. The M3+ jons, Ce?", Eu3', Gd3‘, and Yb3:
arc also colorless, but the first three absorb in the ultraviolet and the last one in the nearinfrared. All of
the other M3 ions absorb in ‘the visible and are colored, although the pink color of the Tb3* ion
is very faint. Principal absorption bands and other pertinent data are summarized in Table 1/3,
p. 4. Except for the absorption bands of the Ce3+ and Yb3® ions, these absorptions are sharply
defined and commonly measurable to one Angstrom unit in width. Except for changes in intensity
and very slight changes in wave length, the bands for a particular M3+ ion are essentially the same in
crystalline salts, complexes, and solutions. These observations are consistent with normally forbidden,
but allowed because of external crystal-field effects, internal transitions within a particular 4f" con-
figuration [1]. The bands noted for the Ce3t and Yb3+ ions, however, arise from configurationa!
changes involving 5d orbitals and are, as a consequence, more intense and affected by complexation.

Fluorescent emission is particularly characteristic of certain europium(lll) complexes and is
useful in establishing their molecular structures.
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Table 1/3
Absorption bands and colors of M3+ ions.

lon Unpaired State Principal Absorption Color Principal Absorption ~ State Unpaired lon
Electrons Bands (A) Bands (A) Electrons
La3+ 0(4f°) 'S, none colorless none . 1S, 0(4f14) Lus3+
Ce3+ 1(4f') 2Fs;, 2105,2220,2380,2520 colorless 9750 2Fy, 1(413) Yb3+
Pr3+ 2(4f2) 3H, 4445,4690,4822,5885 green 3600,6825,7800 3Hg 2(4f12) Tm3+
Nd3+ 3(4f3) 4l,,, 3540,5218,5745,7395,reddish = 3642,3792,4870,5228,%l:s;, 3(4f11) Er3+
7420,7975,8030,8680 6525
Pm3+4(4f4) 51, 5485,5680,7025,7355 pink; 2870,3611,4161,4508,51;  4(4f10) Ho3+
yellow 5370,6410
Sm3+5(4f5) ©6H., 3625,3745,4020 yellow 3504,3650,9100 SHis/, 5(41°)  Dy3+
Eu3t+ 6(4f6) 7F, 3755,3941 colorless*) 2844,3503,3677,4872 7F  6(4f8) Tb3+

Gd3+ 7(4f7) 8S,,, 2729,2733,2754,2756 colorless 2729,2733,2754,2756 8S,,, 7(4f7) Gd3+
*) Tb3+ may be very pale pink. '

Literature to 1.1:

[1] W. C. Martin, L. Hagan, J. Reader, J. Sugar (J. Phys. Chem. Ref. Data 3 [1974] 771/80),
W. C. Martin, R. Zalubas, L. Hagan (Atomic Energy Levels, The Rare-Earth Elements, Washington,
D.C., 1978). — [2] B. B. Cunningham (17th Intern. Congr. Pure Appl. Chem., Miinchen 1959
[1960], p. 64/81). — [3] C. Klixbill Jorgensen (J. Inorg. Nucl. Chem. 1 [1955] 301/8). — [4] L. E.
Sutton (Tables of Interatomic Distances and Configuration in Molecules and lons, Spec. Publ. 18,
The Chemical Society, London 1965, p. 53s/513s). — [5] R. D. Shannon, C. T. Prewitt (Acta Cryst.
B 25 [1969] 925/46). . :

[6] B. G. Wybourne (Spectroscopic Properties of the Rare Earths, Interscience, New York 1965).
— [7]1 K. N. R. Taylor, M. I. Darby (Physics of Rare Earth Solids, London 1972, p. 1/36).

1.2 Complexation of M+ lons

Although many complex ions and compounds are described in subsequent chapters, the total
number and types of characterized and potentially characterizable species are far less than those
derived from the d-transition metals and their ions. Among the factors that are responsible for these
differences and thus mitigate against the formation of many complex species are those listed below:

Electronic Configuration. The ions Sc3+, Y3+, La3+, and Ce** all have noble-gas atom
electronic configurations, like the ions Ca2+, Sr2+, and Ba2*, and thus present no orbitals that could
be involved in covalent bond hybridization or interaction. The ions Ce3+-Yb3+, Sm2+, Eu2+, and
Tb4+ are characterized by incomplete 4f'4 configurations, which are sufficiently well buried as to
preclude the kinds of interaction that are involved with incompletely occupied d orbitals. The ions
Yb2+ and Lu3+ have Xenon-atom + 4f14 configurations, which again preclude covalency. Only higher-
energy orbitals could thus be involved in covalent linkages, which is possible but uncommon. Ligand-
field stabilization energies, where determined, are of the order of only 1 to 2 kcal - mol—'. By contrast,
the distinguishing orbitals of the d-transition metal ions are valency-shell orbitals, and ligand-field
stabilization energies are 100 kcal - mol=' or more.

lonic Radii. Eeach of the cations (M2+, M3+, or M4+) 'is comparatively large for its charge type,
thereby minimizing electrostatic interactions and reducing ionic bond strengths. Among the M3+
ions, maximum electrostatic interaction is expected for scandium.

Ligand Exchange. In those few cases that have been investigated, ligand exchange reactions
in aqueous solution have proved to be very rapid. Both the number of species isolable from aqueous
systems and the possibilities of isomerism are thus limited. A further complication is that a composi-
tion noted for a solid may not persist in solution, and a given complex often is destroyed when
recrystallization is attempted.
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The water molecule is a particularly strong ligand relative to all the M2+, M3+, and M4+ ions of
the rare earth elements and thus either competes strongly for ligand sites or displaces readily other
previously bonded ligands. In either a neutral or acidic aqueous environment, competition of this type
precludes bonding by any but the strongest ligands and effectively restricts isolable complexes to
those formed by chelating ligands. Under alkaline conditions, the hydroxide ion is an even stronger
competitor for ligand sites, largely because of the reduced solubilities of the hydrous oxides and/or
hydroxides of the M3+'and M4+ jons. This situation is exemplified particularly by ammonia and the
amines which, although strong nitrogen-donor species, generate in contact with water sufficient
concentrations of hydroxide ion to effect precipitation.

Donor Atoms. The cations in question are all typical “A-type acceptors’’ in the Ahrland-Chatt-
Davies sense [1, 2] or “hard acids' in the Pearson sense [3]. By a wide margin, most of the
complexes isolable from aqueous systems contain ligands with oxygen-donor sites. Many of these
ligands are pure oxygen-donor species; others are mixed oxygen-nitrogen-donor species such as
the amine- and polyaminecarboxylates. A limited number of particularly strong nitrogen-donor
species which are not themselves extensively hydrolyzable yield pure nitrogen-donor species from
aqueous systems. Others coordinate only in the absence of water. Fluoride ion is another strong
donor, but relatively few species based upon carbon, sulfur, phosphorus, or heavy halide ion-donors
have been described.

These factors indicate that the coordination chemistry of these cations is subsfantially different
from that of the d-transition metal ions.

Literature to 1.2:

[1] S. Ahrland, J. Chatt, N. R. Davies (Quart. Rev. [London] 12 [1958] 265/76). — [2] R. J. P
Williams, J. D. Hale (Struct. Bonding [Berlin] 1 [1966] 249/81). — [3] R. G. Pearson (J. Am. Chem.
Soc. 85 [1963] 3533/9; J. Chem. Educ. 45 [1968] 581/7, 643/8).

1.3 Molecular Geometry and Coordination Number

Contrary to conclusions appearing in the early literature, the coordination number (C.N.) of an
Mpr+ jon, except Sc3+, in a complex species is rarely six and is commonly larger than six [1 to 3].
Large coordination numbers are consistent with comparatively large ionic radii and lead to a number
of molecular geometries. Available experimental data are consistent with (1) the variability in co-
ordination number for a given M+ ion or a series of ions of the same charge is more dependent
upon the spatial accommodation of ligands than upon the bonding properties of ligands and
(2) a coordination number in solution commonly differs from a coordination number in a crystal for
the same Mn~+ jon and the same ligand. Definitive data are available only for crystals. Those for
solutions are commonly more suggestive than definitive.

The most probable spatial positions occupied by donor atoms relative to central cations M+ are
predictable in terms of Coulombic repulsions involving ligand atoms or electronic pairs and the
requirements of maximum symmetry regardless of whether the bonding is ionic or covalent [4 to 7].
Polyhedra, listed in order of preference, and site symmetries so predicted are given below [1]:

C.N. Polyhydra Site C.N. Polyhydra Site
Symmetries Symmetries

6  octahedron (On) 8  triangular faced dodecahedron (D,q4)
trigonal prism : (Dan) - square antiprism (D4a)

7 pentagonal bipyramid (Dsn) 9 tricapped trigonal prism {Dan)
monocapped octahedron (Cay) 10 4,4-bicapped square antiprism (D4q)
monocapped trigonal prism (Ca) 11 pentacapped trigonal prism

12 icosahedron (Is)

It is important to realize that among complexes of the rare earth elements the energy of reorganization
in going from coordination number 7 to 8, 8 to 9, or 9 to 10 is sufficiently small that solvation upon
dissolution of a crystal may readily change the coordination .number [4].
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In subsequent chapters and for specific ligands, molecular structures are described in detail.
The possibilities for. isomerism among these large coordination numbers are extensive, but only
limited definitive data are currently available. 3

Literature to 1.3:

[1] T. Moeller (MTP [Med. Tech. Publ. Co.] Intern. Rev. Sci. Inorg. Chem. Ser. One 7 [1972]
275/98). — [2] S. P. Sinha (Struct. Bonding [Berlin] 25 [1976] 69/149). — [3] S. P. Sinha
(Complexes of the Rare Earths, Pergamon Press, London 1966). — [4] E. L. Muetterties, C. M.

Wright (Quart. Rev. [London] 21 [1967] 109/94) — [5] M. G B. Drew (Progr. Inorg. Chem. 23

[1977] 67/210, 177).

[6] M. G. B. Drew (Coord. Chem Rev 24 [1 977] 179/275). — [7] D. Kepert (Progr. Inorg.
Chem. 25 [1979] 41/144).

1.4 Thermodynamic and Kinetic Stability

Thermodynamic stability in solution is measured by the free-energy change (A G) for the overall
complexation process, which in turn is related to the enthalpy change (AH), the entropy change
(A'S), and the overall formation constant (B,) as

AG=AH-TAS=-RTInB,

If the complexation reaction proceeds in steps, each step is described by a similarly equation except
that the appropriate stepwise formation constant (K) is used. Of these quantities, AH and either {8
or K can be measured experimentally, each by several experimental techniques. Particularly extensive
tabulations of Ig K and Ig B values are available [1, 2].

Comparisons for a given ligand in terms of either AG or B, show that complexes of these
cations are thermodynamically less stable than those for d-transition metal ions. Comparisons among
complexes of the various M3+ jons with particular ligands show no common trend and no single
type of variation, although some relationship to variation in crystal or solvated radius might be
expected. Depending upon the ligand, three broad trends have been distinguished.[3], namely,
(1) a more or less regular increase in stability with decreasing crystal radius, (2) increase to essential
constancy in the Gd3+-Lu3+ region, and (3) increase to a maximum in the vicinity of the Dy3+ jon.
For many, but not all ligands, there exists a discontinuity in Ig 8, or Ig K at/or in the vicinity of the

‘Gd3+ jon [4]. For a number of ligands, a plot of Ig B, vs. nuclear charge gives four regular regions

of variation separated by discontinuities—the tetrad [5] or double-double [6] effect. Attempted
explanations include the inclined W hypothesis [7] and variation in nature of the hydration sphere
of the M3+ jon [8].

For complexation in aqueous solution, the entropy change provides the major contribution to
stability. This change results in particular from displacement of bonded water molecules by chelating
ligands. Changes in hydration numbers are supported by experimental data of various types. By using

anhydrous media, the competing effects of water molecules are eliminated, and thermodynamic _

interpretations are simplified, e.g., by reaction of M3+ ions with ethylenediamine in anhydrous aceto-
nitrile [9].

Complexation, or ligand exchange, reactions in solution have been only incompletely investigated
from the kinetic point of view [3]. Those involving simple ligands are usually so rapid that relaxation
techniques must be used to follow them. With more complicated ligands, many reactions are slow
enough to be investigated by stop-flow or analysis-of-aliquots methods. In aqueous solution, reaction

- with a ligand by loss of water molecules from the inner hydration sphere may be the rate-determining

step. There is good evidence, based upon kinetic data for a number of ligands, that the primary
hydration sphere remains the same in the broad La3+-Eu3+ region, that in the Eu*-Ho3+ region
it decreases .in size (decrease.in coordination number), and that it then remains constant but of
smaller size in the Ho3+-Lu3* region. Fundamentally, however, all ligand exchange processes are
relatively rapid. ,



