O'REILLY"

MO dern C+_|.

MEC++11F1CH+14 942N BN 8E (32E08R)

% &K% Himt Scott Meyers &

Effective Modern (++
BE C++1FIC++14 B9 42N ELIR M i (2 En kR)

Effective Modern C++

Kcott Meyers %

AR {4 ,‘: i 1, 1
N f‘tJ'T*'”
10 EE

O'REILLY®

O'Reilly Media, Inc. 324X R B K & 4 AR A H BR

Beijing - Cambridge + Farnham « KéIn « Sebastopol « Tokyo

MR REAFEHRM

BB RS B (CIP) 88

Effective Modern C ++: (3% C ++11 Al C++14 [y
B 30/ (38) I HBHT (Meyers, S)#. — 3
ENZR. —RE AL AR m R A, 20159

4544 JE 3 : Effective Modern C ++

I[SBN 978 —7- 5641 — 5911 -5

[.QE+ II.®#&- 0. OCEF-BFI
<3¢ V. OTP312

rp [i AS 1 CIP $diE 1% 57 (2015) 55 165785 5

VLI AR EERLA RIEIE
. 10- 2015- 239 5

© 2015 by O'Reilly Media, Inc.
Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,

2015. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 LBl O'Reilly Media, Inc. 5 & 2015,

EL YR F R AL R IR 2015, SR EP MR &Y R Ao 4 2 A7 B R AR A 4K B A6 BT A
—— O'Reilly Media, Inc.&9# T .

BRAFT AT » R AT B @& T, AR 3 69 AEAT 3 4 Ao o 38 RAF AT X E4 .

Effective Modern C ++: 23 C++11 fl C++14 14 42 P B4 GEEP RO

HAREAT : AR FE R AL

Ho db: FERDUMERE 25 HB%: 210096
R A TEEE

%4 fik . http//www.seupress.com
HL-FHB{ . press@seupress.com

Fil = &5 M 77 A 5E = BN AT PR]
7S ; 787 2K X 980 22k 16 JFA<
k. 21

: 411 T

: 20154FE 9 A5 1R

: 2015 4F 9 H 5 1 RER

: ISBN 978 — 7— 5641 — 5911 -5
ffr: 62.00 G

M oFNHEHI
oS ST

A P A5 A R R A (), 3 L S B IR R . IE (S ED « 025- 83791830

Praise for Effective Modern (++

So, still interested in C++? You should be! Modern C++ (i.e., C++11/C++14)
is far more than just a facelift. Considering the new features, it seems that it’s
more a reinvention. Looking for guidelines and assistance? Then this book

is surely what you are looking for. Concerning C++, Scott Meyers was

and still is a synonym for accuracy, quality, and delight.

—Gerhard Kreuzer
Research and Development Engineer, Siemens AG

Finding utmost expertise is hard enough. Finding teaching perfectionism—
an author’s obsession with strategizing and streamlining explanations—is also difficult.
You know you’re in for a treat when you get to find both embodied in the same person.

Effective Modern C++ is a towering achievement from a consummate technical writer.
It layers lucid, meaningful, and well-sequenced clarifications on top of complex and
interconnected topics, all in crisp literary style. You're equally unlikely to find a
technical mistake, a dull moment, or a lazy sentence in Effective Modern C++.

—Andrei Alexandrescu
Ph.D., Research Scientist, Facebook, and author of Modern C++ Design

As someone with over two decades of C++ experience, to get the most out of
modern C++ (both best practices and pitfalls to avoid), I highly recommend
getting this book, reading it thoroughly, and referring to it often!

I've certainly learned new things going through it!

—Nevin Liber
Senior Software Engineer, DRW Trading Group

Bjarne Stroustrup—the creator of C++—said, “C++11 feels like a new language.”
Effective Modern C++ makes us share this same feeling by clearly explaining
how everyday programmers can benefit from new features and idioms

of C++11 and C++14. Another great Scott Meyers book.

—Cassio Neri
EX Quantitative Analyst, Lloyds Banking Group

Scott has the knack of boiling technical complexity down to an understandable kernel.
His Effective C++ books helped to raise the coding style of a previous generation of C++
programmers; the new book seems positioned to do the same for those using modern C++.

—Roger Orr
OR/2 Limited, a member of the ISO C++ standards committee

Effective Modern C++ is a great tool to improve your modern C++ skills. Not only does it
teach you how, when and where to use modern C++ and be effective, it also explains why.
Without doubt, Scott’s clear and insightful writing, spread over 42 well-thought items,
gives programmers a much better understanding of the language.

—Bart Vandewoestyne
Research and Development Engineer and C++ enthusiast

I'love C++, it has been my work vehicle for many decades now. And with
the latest raft of features it is even more powerful and expressive than I
would have previously imagined. But with all this choice comes the question
“when and how do I apply these features?” As has always been the case,
Scott’s Effective C++ books are the definitive answer to this question.

—Damien Watkins
Computation Software Engineering Team Lead, CSIRO

Great read for transitioning to modern C++—new C++11/14
language features are dés;ribed alongside C++98, subject items are
easy to reference, and advice summarized at the end of each section.
Entertaining and useful for both casual and advanced C++ developers.

—Rachel Cheng
F5 Networks

If you’re migrating from C++98/03 to C++11/14, you need the eminently practical and
clear information Scott provides in Effective Modern C++. If you're already writing
C++11 code, you'll probably discover issues with the new features through Scott’s
thorough discussion of the important new features of the language. Either way, this book
is worth your time.

—Rob Stewart
Boost Steering Committee member (boost.org)

For Darla,

black Labrador Retriever extraordinaire

From the Publisher

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
‘cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Effective Modern C++ by Scott Mey-
ers (O’Reilly). Copyright 2015 Scott Meyers, 978-1-491-90399-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

« Safari Books Online is an on-demand digital library that
Safa rl delivers expert content in both book and video form
from the world’s leading authors in technology and

business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Xi

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Comments and questions concerning this book may be addressed to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Fromthe Publisher

Acknowledgments

[started investigating what was then known as C++0x (the nascent C++11) in 2009. I
posted numerous questions to the Usenet newsgroup comp.std.c++, and I'm grate-
ful to the members of that community (especially Daniel Kriigler) for their very help-
ful postings. In more recent years, I've turned to Stack Overflow when I had
questions about C++11 and C++14, and I'm equally indebted to that community for
its help in understanding the finer points of modern C++.

In 2010, I prepared materials for a training course on C++0x (ultimately published as
Overview of the New C++, Artima Publishing, 2010). Both those materials and my
knowledge greatly benefited from the technical vetting performed by Stephan T. Lav-
avej, Bernhard Merkle, Stanley Friesen, Leor Zolman, Hendrik Schober, and Anthony
Williams. Without their help, I would probably never have been in a position to
undertake Effective Modern C++. That title, incidentally, was suggested or endorsed
by several readers responding to my 18 February 2014 blog post, “Help me name my
book,” and Andrei Alexandrescu (author of Modern C++ Design, Addison-Wesley,
2001) was kind enough to bless the title as not poaching on his terminological turf.

I'm unable to identify the origins of all the information in this book, but some sour-
ces had a relatively direct impact. Item 4’s use of an undefined template to coax type
information out of compilers was suggested by Stephan T. Lavavej, and Matt P. Dziu-
binski brought Boost.TypeIndex to my attention. In Item 5, the unsigned-
std::vector<int>::size_type example is from Andrey Karpov’s 28 February
2010 article, “In what way can C++0x standard help you eliminate 64-bit errors.” The
std::pair<std::string, int>/std::pair<const std::string, int> example in
the same Item is from Stephan T. Lavavej’s talk at Going Native 2012, “STL11: Magic
&& Secrets.” Item 6 was inspired by Herb Sutter’s 12 August 2013 article, “GotW #94
Solution: AAA Style (Almost Always Auto).” Item 9 was motivated by Martinho Fer-
nandes’ blog post of 27 May 2012, “Handling dependent names.” The Item 12 exam-
ple demonstrating overloading on reference qualifiers is based on Casey’s answer to
the question, “What’s a use case for overloading member functions on reference

xiii

qualifiers?,” posted to Stack Overflow on 14 January 2014. My Item 15 treatment of
C++14’s expanded support for constexpr functions incorporates information I
received from Rein Halbersma. Item 16 is based on Herb Sutter’s C++ and Beyond
2012 presentation, “You don’t know const and mutable.” Item 18’s advice to have
factory functions return std: :unique_ptrs is based on Herb Sutter’s 30 May 2013
article, “GotW# 90 Solution: Factories.” In Item 19, fastLoadWidget is derived from
Herb Sutter’s Going Native 2013 presentation, “My Favorite C++ 10-Liner.” My treat-
ment of std: :unique_ptr and incomplete types in Item 22 draws on Herb Sutter’s
27 November 2011 article, “GotW #100: Compilation Firewalls” as well as Howard
Hinnant’s 22 May 2011 answer to the Stack Overflow question, “Is
std::unique_ptr<T> required to know the full definition of T?” The Matrix addition
example in Item 25 is based on writings by David Abrahams. JoeArgonne’s 8 Decem-
ber 2012 comment on the 30 November 2012 blog post, “Another alternative to
lambda move capture,” was the source of Item 32’s std: :bind-based approach to
emulating init capture in C++11. Item 37’s explanation of the problem with an
implicit detach in std::thread’s destructor is taken from Hans-]. Boehm’s 4
December 2008 paper, “N2802: A plea to reconsider detach-on-destruction for thread
objects.” Item 41 was originally motivated by discussions of David Abrahams’ 15
August 2009 blog post, “Want speed? Pass by value.” The idea that move-only types
deserve special treatment is due to Matthew Fioravante, while the analysis of
assignment-based copying stems from comments by Howard Hinnant. In Item 42,
Stephan T. Lavavej and Howard Hinnant helped me understand the relative perfor-
mance profiles of emplacement and insertion functions, and Michael Winterberg
brought to my attention how emplacement can lead to resource leaks. (Michael cred-
its Sean Parent’s Going Native 2013 presentation, “C++ Seasoning,” as his source).
Michael also pointed out how emplacement functions use direct initialization, while
insertion functions use copy initialization.

Reviewing drafts of a technical book is a demanding, time-consuming, and utterly
critical task, and I'm fortunate that so many people were willing to do it for me. Full
or partial drafts of Effective Modern C++ were officially reviewed by Cassio Neri,
Nate Kohl, Gerhard Kreuzer, Leor Zolman, Bart Vandewoestyne, Stephan T. Lavavej,
Nevin “-)” Liber, Rachel Cheng, Rob Stewart, Bob Steagall, Damien Watkins, Bradley
E. Needham, Rainer Grimm, Fredrik Winkler, Jonathan Wakely, Herb Sutter, Andrei
Alexandrescu, Eric Niebler, Thomas Becker, Roger Orr, Anthony Williams, Michael
Winterberg, Benjamin Huchley, Tom Kirby-Green, Alexey A Nikitin, William Deal-
try, Hubert Matthews, and Tomasz Kaminski. I also received feedback from several
readers through O’Reilly’s Early Release EBooks and Safari Books Online’s Rough
Cuts, comments on my blog (The View from Aristeia), and email. I'm grateful to each
of these people. The book is much better than it would have been without their help.
I'm particularly indebted to Stephan T. Lavavej and Rob Stewart, whose extraordi-
narily detailed and comprehensive remarks lead me to worry that they spent nearly as

xiv | Acknowledgments

much time on this book as I did. Special thanks also go to Leor Zolman, who, in addi-
tion to reviewing the manuscript, double-checked all the code examples.

Dedicated reviews of digital versions of the book were performed by Gerhard
Kreuzer, Emyr Williams, and Bradley E. Needham.

My decision to limit the line length in code displays to 64 characters (the maximum
likely to display properly in print as well as across a variety of digital devices, device
orientations, and font configurations) was based on data provided by Michael Maher.

Since initial publication, I've incorporated bug fixes and other improvements sug-
gested by Kostas Vlahavas, Daniel Alonso Alemany, Takatoshi Kondo, Bartek Szur-
got, Tyler Brock, Jay Zipnick, Barry Revzin, Robert McCabe, Oliver Bruns, Fabrice
Ferino, Dainis Jonitis, Petr Valasek, Bart Vandewoestyne, Kjell Hedstrom, Marcel
Wid, Mark A. McLaughlin, Miroslaw Michalski, Vlad Gheorghiu, Mitsuru Kariya,
Minkoo Seo, Tomasz Kaminski, Agustin K-ballo Bergé, Grebénkin Sergey, Adam
Peterson, Matthias J. Sax, Semen Trygubenko, Lewis Stiller, and Leor Zolman. Many
thanks to all these people for helping improve the accuracy and clarity of Effective
Modern C++.

Ashley Morgan Williams made dining at the Lake Oswego Pizzicato uniquely enter-
taining. When it comes to man-sized Caesars, she’s the go-to gal.

More than 20 years after first living through my playing author, my wife, Nancy L.
Urbano, once again tolerated many months of distracted conversations with a cock-
tail of resignation, exasperation, and timely splashes of understanding and support.
During the same period, our dog, Darla, was largely content to doze away the hours I
spent staring at computer screens, but she never let me forget that there’s life beyond
the keyboard.

Acknowledgments | xv

From the Publisher

Table of Contents

ADNOWICAGMENTS. < o s oo 00 506 eimw sivs oo siwassnis s owmas - RS-

Introduction

1. Deducing Types

Item 1:
Item 2:
Item 3:
Item 4:

Understand template type deduction.
Understand auto type deduction.
Understand decltype.

Know how to view deduced types.

: Prefer auto to explicit type declarations.
: Use the explicitly typed initializer idiom when auto deduces

undesired types.

3. Moving Lo ModEM G T s suinmsns ive d sditiod snsnimenvnionyawi i +E 68

Item 7:
Item 8:
Item 9:
Item 10:
Item 11:
Item 12:
Item 13:
Item 14:
Item 15:

Distinguish between () and {} when creating objects.
Prefer nullptr to @ and NULL.
Prefer alias declarations to typedefs.
Prefer scoped enums to unscoped enums.
Prefer deleted functions to private undefined ones.
Declare overriding functions override.
Prefer const_1iteratorsto iterators.
Declare functions noexcept if they won’t emit exceptions.
Use constexpr whenever possible.

18
23
30

37
37

43

49
49
58
63
67
74
79
86
90
97

vii

Item 16:
Item 17:

SINATE POMMEOTS: o 054 0105 00 0100w s 500 &'0 318 6 5686797004 675,598 § 0580 06 61930 WFRIE T80 SO/ M0 w0 1w e

Item 18:

Item 19:

Item 20:

Item 21:

Item 22:

Rvalue References, Move Semantics, and Perfect Forwarding

Item 23:
Item 24:
Item 25:

Item 26:
Item 27:

Item 28:
Item 29:

Item 30:

Lambda Expressions.................. e e ol TR S

Item 31:
Item 32:
Item 33:
Item 34:

The Concurrency API

Item 35:
Item 36:
Item 37:
Item 38:
Item 39:

Make const member functions thread safe.
Understand special member function generation.

Use std: :unique_ptr for exclusive-ownership resource
management.

Use std: :shared_ptr for shared-ownership resource
management.

Use std: :weak_ptr for std: :shared_ptr-like pointers that can
dangle.

Prefer std: :make_unique and std: :make_shared to direct use of

new.

When using the Pimpl Idiom, define special member functions in

the implementation file.

Understand std: :move and std: : forward.

Distinguish universal references from rvalue references.

Use std: :move on rvalue references, std: : forward on universal
references.

Avoid overloading on universal references.

Familiarize yourself with alternatives to overloading on universal
references.

Understand reference collapsing.

Assume that move operations are not present, not cheap, and not
used.

Familiarize yourself with perfect forwarding failure cases.

Avoid default capture modes.

Use init capture to move objects into closures.

Use decltype on auto&& parameters to std: : forward them.
Prefer lambdas to std: :bind.

Prefer task-based programming to thread-based.

Specify std: : launch: : async if asynchronicity is essential.
Make std: : threads unjoinable on all paths.

Be aware of varying thread handle destructor behavior.
Consider void futures for one-shot event communication.

103
109

117

118

125

134

139
147

157

158
164

168
177

184
197

203
207

215
216
224

229
232

241
241
245
250
258
262

viii

| Table of Contents

Item 40: Use std: :atomic for concurrency, volatile for special memory.

8. Tweaks............. A R PR 0 S U AL T R T
Item 41: Consider pass by value for copyable parameters that are cheap to

move and always copied.

Item 42: Consider emplacement instead of insertion.

Index....

@0 M09 000 8 E 0000 0000 U0 S0 600080 080NN E0NsSNN 00000 NS08 NsN BB EEES

271
281

281
292

303

Table of Contents |

ix

Introduction

If you're an experienced C++ programmer and are anything like me, you initially
approached C++11 thinking, “Yes, yes, I get it. It's C++, only more so.” But as you
learned more, you were surprised by the scope of the changes. auto declarations,
range-based for loops, lambda expressions, and rvalue references change the face of
C++, to say nothing of the new concurrency features. And then there are the
idiomatic changes. ® and typedefs are out, nullptr and alias declarations are in.
Enums should now be scoped. Smart pointers are now preferable to built-in ones.
Moving objects is normally better than copying them.

There’s a lot to learn about C++11, not to mention C++14.

More importantly, there’s a lot to learn about making effective use of the new capabil-
ities. If you need basic information about “modern” C++ features, resources abound,
but if you’re looking for guidance on how to employ the features to create software
that’s correct, efficient, maintainable, and portable, the search is more challenging.
That’s where this book comes in. It’s devoted not to describing the features of C++11
and C++14, but instead to their effective application.

The information in the book is broken into guidelines called Items. Want to under-
stand the various forms of type deduction? Or know when (and when not) to use
auto declarations? Are you interested in why const member functions should be
thread safe, how to implement the Pimpl Idiom using std: :unique_ptr, why you
should avoid default capture modes in lambda expressions, or the differences
between std: :atomic and volatile? The answers are all here. Furthermore, they’re
platform-independent, Standards-conformant answers. This is a book about portable
Ct++.

The Items in this book are guidelines, not rules, because guidelines have exceptions.
The most important part of each Item is not the advice it offers, but the rationale
behind the advice. Once you’ve read that, you'll be in a position to determine whether
the circumstances of your project justify a violation of the Item’s guidance. The true

goal of this book isn’t to tell you what to do or what to avoid doing, but to convey a
deeper understanding of how things work in C++11 and C++14.

Terminology and Conventions

To make sure we understand one another, it’s important to agree on some terminol-
ogy, beginning, ironically, with “C++.” There have been four official versions of C++,
each named after the year in which the corresponding ISO Standard was adopted:
C++98, C++03, C++11, and C++14. C++98 and C++03 differ only in technical
details, so in this book, I refer to both as C++98. When I refer to C++11, I mean both
C++11 and C++14, because C++14 is effectively a superset of C++11. When I write
C++14, I mean specifically C++14. And if I simply mention C++, 'm making a broad
statement that pertains to all language versions.

Term | Use Language Versions | Mean

++ All !
(++98 (++98 and (++03
G-+ C(++11and (++14 l
C++14 C++14 |

As a result, I might say that C++ places a premium on efficiency (true for all ver-
sions), that C++98 lacks support for concurrency (true only for C++98 and C++03),
that C++11 supports lambda expressions (true for C++11 and C++14), and that
C++14 offers generalized function return type deduction (true for C++14 only).

C++11’s most pervasive feature is probably move semantics, and the foundation of
move semantics is distinguishing expressions that are rvalues from those that are lval-
ues. That’s because rvalues indicate objects eligible for move operations, while lvalues
generally don’t. In concept (though not always in practice), rvalues correspond to
temporary objects returned from functions, while lvalues correspond to objects you
can refer to, either by name or by following a pointer or lvalue reference.

A useful heuristic to determine whether an expression is an lvalue is to ask if you can
take its address. If you can, it typically is. If you can’t, it’s usually an rvalue. A nice
feature of this heuristic is that it helps you remember that the type of an expression is
independent of whether the expression is an lvalue or an rvalue. That is, given a type
T, you can have lvalues of type T as well as rvalues of type T. It’s especially important
to remember this when dealing with a parameter of rvalue reference type, because the
parameter itself is an Ivalue:

class Widget {
public:
Widget(Widget&& rhs); /] rhs is an lvalue, though it has
// an rvalue reference type

};...

Here, it'd be perfectly valid to take rhs’s address inside Widget’s move constructor,
so rhs is an Ivalue, even though its type is an rvalue reference. (By similar reasoning,
all parameters are lvalues.)

That code snippet demonstrates several conventions I normally follow:

« The class name is Widget. I use Widget whenever I want to refer to an arbitrary
user-defined type. Unless I need to show specific details of the class, I use Widget
without declaring it.

« I use the parameter name rhs (“right-hand side”). It’s my preferred parameter
name for the move operations (i.e., move constructor and move assignment oper-
ator) and the copy operations (i.e., copy constructor and copy assignment opera-
tor). I also employ it for the right-hand parameter of binary operators:

Matrix operator+(const Matrix& lhs, const Matrix& rhs);

It’s no surprise, I hope, that Lhs stands for “left-hand side.”

« I apply special formatting to parts of code or parts of comments to draw your
attention to them. In the Widget move constructor above, I've highlighted the
declaration of rhs and the part of the comment noting that rhs is an lvalue.
Highlighted code is neither inherently good nor inherently bad. It’s simply code
you should pay particular attention to.

@ »

« T use “.” to indicate “other code could go here.” This narrow ellipsis is different
from the wide ellipsis (“. . .”) that’s used in the source code for C++11’s variadic
templates. That sounds confusing, but it’s not. For example:

template<typename... Ts> /| these are C++
void processVals(const Ts&... params) // source code
{ // ellipses

// this means "some
// code goes here"

}

The declaration of processVals shows that I use typename when declaring type
parameters in templates, but that’s merely a personal preference; the keyword
class would work just as well. On those occasions where I show code excerpts

