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Praise for Effective Modern (++

So, still interested in C++? You should be! Modern C++ (i.e., C++11/C++14)
is far more than just a facelift. Considering the new features, it seems that it’s
more a reinvention. Looking for guidelines and assistance? Then this book

is surely what you are looking for. Concerning C++, Scott Meyers was

and still is a synonym for accuracy, quality, and delight.

—Gerhard Kreuzer
Research and Development Engineer, Siemens AG

Finding utmost expertise is hard enough. Finding teaching perfectionism—
an author’s obsession with strategizing and streamlining explanations—is also difficult.
You know you’re in for a treat when you get to find both embodied in the same person.

Effective Modern C++ is a towering achievement from a consummate technical writer.
It layers lucid, meaningful, and well-sequenced clarifications on top of complex and
interconnected topics, all in crisp literary style. You're equally unlikely to find a
technical mistake, a dull moment, or a lazy sentence in Effective Modern C++.

—Andrei Alexandrescu
Ph.D., Research Scientist, Facebook, and author of Modern C++ Design

As someone with over two decades of C++ experience, to get the most out of
modern C++ (both best practices and pitfalls to avoid), I highly recommend
getting this book, reading it thoroughly, and referring to it often!

I've certainly learned new things going through it!

—Nevin Liber
Senior Software Engineer, DRW Trading Group

Bjarne Stroustrup—the creator of C++—said, “C++11 feels like a new language.”
Effective Modern C++ makes us share this same feeling by clearly explaining
how everyday programmers can benefit from new features and idioms

of C++11 and C++14. Another great Scott Meyers book.

—Cassio Neri
EX Quantitative Analyst, Lloyds Banking Group



Scott has the knack of boiling technical complexity down to an understandable kernel.
His Effective C++ books helped to raise the coding style of a previous generation of C++
programmers; the new book seems positioned to do the same for those using modern C++.

—Roger Orr
OR/2 Limited, a member of the ISO C++ standards committee

Effective Modern C++ is a great tool to improve your modern C++ skills. Not only does it
teach you how, when and where to use modern C++ and be effective, it also explains why.
Without doubt, Scott’s clear and insightful writing, spread over 42 well-thought items,
gives programmers a much better understanding of the language.

—Bart Vandewoestyne
Research and Development Engineer and C++ enthusiast

I'love C++, it has been my work vehicle for many decades now. And with
the latest raft of features it is even more powerful and expressive than I
would have previously imagined. But with all this choice comes the question
“when and how do I apply these features?” As has always been the case,
Scott’s Effective C++ books are the definitive answer to this question.

—Damien Watkins
Computation Software Engineering Team Lead, CSIRO

Great read for transitioning to modern C++—new C++11/14
language features are dés;ribed alongside C++98, subject items are
easy to reference, and advice summarized at the end of each section.
Entertaining and useful for both casual and advanced C++ developers.

—Rachel Cheng
F5 Networks

If you’re migrating from C++98/03 to C++11/14, you need the eminently practical and
clear information Scott provides in Effective Modern C++. If you're already writing
C++11 code, you'll probably discover issues with the new features through Scott’s
thorough discussion of the important new features of the language. Either way, this book
is worth your time.

—Rob Stewart
Boost Steering Committee member (boost.org)
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From the Publisher

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
‘cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Effective Modern C++ by Scott Mey-
ers (O’Reilly). Copyright 2015 Scott Meyers, 978-1-491-90399-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

« Safari Books Online is an on-demand digital library that
Safa rl delivers expert content in both book and video form
from the world’s leading authors in technology and

business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Xi



Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Comments and questions concerning this book may be addressed to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Introduction

If you're an experienced C++ programmer and are anything like me, you initially
approached C++11 thinking, “Yes, yes, I get it. It's C++, only more so.” But as you
learned more, you were surprised by the scope of the changes. auto declarations,
range-based for loops, lambda expressions, and rvalue references change the face of
C++, to say nothing of the new concurrency features. And then there are the
idiomatic changes. ® and typedefs are out, nullptr and alias declarations are in.
Enums should now be scoped. Smart pointers are now preferable to built-in ones.
Moving objects is normally better than copying them.

There’s a lot to learn about C++11, not to mention C++14.

More importantly, there’s a lot to learn about making effective use of the new capabil-
ities. If you need basic information about “modern” C++ features, resources abound,
but if you’re looking for guidance on how to employ the features to create software
that’s correct, efficient, maintainable, and portable, the search is more challenging.
That’s where this book comes in. It’s devoted not to describing the features of C++11
and C++14, but instead to their effective application.

The information in the book is broken into guidelines called Items. Want to under-
stand the various forms of type deduction? Or know when (and when not) to use
auto declarations? Are you interested in why const member functions should be
thread safe, how to implement the Pimpl Idiom using std: :unique_ptr, why you
should avoid default capture modes in lambda expressions, or the differences
between std: :atomic and volatile? The answers are all here. Furthermore, they’re
platform-independent, Standards-conformant answers. This is a book about portable
Ct++.

The Items in this book are guidelines, not rules, because guidelines have exceptions.
The most important part of each Item is not the advice it offers, but the rationale
behind the advice. Once you’ve read that, you'll be in a position to determine whether
the circumstances of your project justify a violation of the Item’s guidance. The true




goal of this book isn’t to tell you what to do or what to avoid doing, but to convey a
deeper understanding of how things work in C++11 and C++14.

Terminology and Conventions

To make sure we understand one another, it’s important to agree on some terminol-
ogy, beginning, ironically, with “C++.” There have been four official versions of C++,
each named after the year in which the corresponding ISO Standard was adopted:
C++98, C++03, C++11, and C++14. C++98 and C++03 differ only in technical
details, so in this book, I refer to both as C++98. When I refer to C++11, I mean both
C++11 and C++14, because C++14 is effectively a superset of C++11. When I write
C++14, I mean specifically C++14. And if I simply mention C++, 'm making a broad
statement that pertains to all language versions.

Term | Use Language Versions | Mean

++ All !
(++98 (++98 and (++03
G-+ C(++11and (++14 l
C++14 C++14 |

As a result, I might say that C++ places a premium on efficiency (true for all ver-
sions), that C++98 lacks support for concurrency (true only for C++98 and C++03),
that C++11 supports lambda expressions (true for C++11 and C++14), and that
C++14 offers generalized function return type deduction (true for C++14 only).

C++11’s most pervasive feature is probably move semantics, and the foundation of
move semantics is distinguishing expressions that are rvalues from those that are lval-
ues. That’s because rvalues indicate objects eligible for move operations, while lvalues
generally don’t. In concept (though not always in practice), rvalues correspond to
temporary objects returned from functions, while lvalues correspond to objects you
can refer to, either by name or by following a pointer or lvalue reference.

A useful heuristic to determine whether an expression is an lvalue is to ask if you can
take its address. If you can, it typically is. If you can’t, it’s usually an rvalue. A nice
feature of this heuristic is that it helps you remember that the type of an expression is
independent of whether the expression is an lvalue or an rvalue. That is, given a type
T, you can have lvalues of type T as well as rvalues of type T. It’s especially important
to remember this when dealing with a parameter of rvalue reference type, because the
parameter itself is an Ivalue:




class Widget {
public:
Widget(Widget&& rhs); /] rhs is an lvalue, though it has
// an rvalue reference type

};...

Here, it'd be perfectly valid to take rhs’s address inside Widget’s move constructor,
so rhs is an Ivalue, even though its type is an rvalue reference. (By similar reasoning,
all parameters are lvalues.)

That code snippet demonstrates several conventions I normally follow:

« The class name is Widget. I use Widget whenever I want to refer to an arbitrary
user-defined type. Unless I need to show specific details of the class, I use Widget
without declaring it.

« I use the parameter name rhs (“right-hand side”). It’s my preferred parameter
name for the move operations (i.e., move constructor and move assignment oper-
ator) and the copy operations (i.e., copy constructor and copy assignment opera-
tor). I also employ it for the right-hand parameter of binary operators:

Matrix operator+(const Matrix& lhs, const Matrix& rhs);

It’s no surprise, I hope, that Lhs stands for “left-hand side.”

« I apply special formatting to parts of code or parts of comments to draw your
attention to them. In the Widget move constructor above, I've highlighted the
declaration of rhs and the part of the comment noting that rhs is an lvalue.
Highlighted code is neither inherently good nor inherently bad. It’s simply code
you should pay particular attention to.

@ »

« T use “.” to indicate “other code could go here.” This narrow ellipsis is different
from the wide ellipsis (“. . .”) that’s used in the source code for C++11’s variadic
templates. That sounds confusing, but it’s not. For example:

template<typename... Ts> /| these are C++
void processVals(const Ts&... params) // source code
{ // ellipses

// this means "some
// code goes here"

}

The declaration of processVals shows that I use typename when declaring type
parameters in templates, but that’s merely a personal preference; the keyword
class would work just as well. On those occasions where I show code excerpts




