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Preface

Squirrel-cage fans are strange. Precious electricity produced by gas and steam turbines
is lost to the very inefficient forward-curved fans of the heating and ventilating indus-
try. The research studies on gas and steam turbines are expensive and very competitive
worldwide. On the contrary, forward-curved squirrel-cage fans are cheap and simple to
build which makes any application of research findings very simple.

The study of the complicated flow field requires advanced measuring techniques
such as laser Doppler anemometry. The combination of building different fans, doing
performance tests and examination of the flow field with laser anemometry was an
attractive research field that was carried out for many years by the team that had written
the present book.

Early in this research, modifications to the inlet were proved to be productive. The
improvements were far more significant than what was already reported in the litera-
ture for other modifications. Later, the present team started with the rotor and the idea
of a half-cone rotor and a half-cone with a lean angle that proved to have merit in many
cases. Tests on the volute geometry indicated that it was not the shape of the volute
cross-section that is important, but the spread angle. Larger spread angle could result
in larger flow rates and could override all optimizations to the inlet! Still an optimum
spread angle could be defined that gives an aerodynamic flow for a limited space.

It was soon known that optimizations without modelling are very expensive
and time-consuming. Simulation of the flow in this fan is not an easy task. Three-
dimensional flow, separated flow after the inlet, large number of blades and separated
three-dimensional boundary layer inside the blades were all the most important com-
plications in any simulations. Although modelling is not accurate, it was proved to be
successful in determining the trends. The modellings were managed to direct research
for correct experimental setups and minimum costs.

With the gained experience on fans and laser anemometry, it was natural to move
into stereoscopic particle image velocimetry. Squirrel-cage fans are ideal instruments
for sample flow measurements in centrifugal turbomachines. They give flat sidewalls
and easy access to measuring plane. They rotate slowly and have many features like
separations and jet/wake flows that have baffled research studies for a long time.

It was a fortunate occasion that Chandos Publishing invited us to write a book on
such fans at this stage. This opportunity provided us with the best chance to review
what was achieved during the past twenty-four years. The first four chapters of the
book contain our studies on fan performance, fluid flow and fan optimization. Chapter
5 deals with aeroacoustic and sound generation behaviour of the forward-curved
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centrifugal fans. Chapter 6 investigates the contribution of jet-wake—volute interac-
tions to flow characteristics and turbulence models which are more advanced, and
we expect it to find serious application when the computing capacity for simulating
centrifugal turbomachines increases.

We are grateful to acknowledge prior publication of a part of our research in the
Journal of Power and Energy, Journal of Turbulence and International Journal of
Heat and Mass Transfer. Detailed references are given at the end of each chapter.

I (the first author) have enjoyed the work of two excellent PhD students in the past
few years who kindly accepted to be my coauthors in this book. Dr Akbari defended
his PhD in 2014 and Mr Mahmoodi shall complete his PhD in a couple of years. There
are still many of my old students who contributed to the subject presented in this book
and I just name them here with much respect:

Mr Matin Hosseini; Mr Mohammad Reza Shetab Booshehri; Mr Mohammad
Reza Najjari; Mr Seyyed Alireza Hosseini; Dr Reza Sepahi Samian; Mr Hossein
Akhavan; Mr Soroosh Shahabadi; Mr Masood Nikkhoo; Late Mr Morteza
Akbarizadeh; Mr Javad Alinejad; Mr Sina Samarbakhsh; Mr Seyyed Mohammad
RezaeiNiya; Mr Arash Heshmat Dehkordi; Mr Saeed Zeinali; Dr Ebrahim Damangir;
Mr Mohammad Hassan Hessami Azizi; Mr Mojtaba Gholamian; Mr Mehdi Askari
Shahi; Mr Ahmad Kazemi Fard; Mr Ali Toorani; Mr Mohammad Jafar Mahmoodi;
Mr Hamid Reza Mirzaei; Dr Seyyed Saeed Mirian; and Dr Ehsan Tooyserkani.

The work is also incomplete if we do not mention other researchers who have done
parallel works on squirrel-cage fans round the globe. As far as we know, the only team
who has produced continuous research in this field is from Oviedo University in Spain.
Their articles have been of much interest and inspiration to us. Other researchers have
not been consistent and only produced occasional results. We are indebted to all the
inspirations we received from these groups and have tried to cite their works at the
end of each relevant chapter.

Nader Montazerin
Tehran
March 2015
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