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Abstract

The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type
transporter (ABC transporter) that exports the thiol-containing redox-active molecules
cysteine and glutathione. These reductants are thought to aid redox homeostasis of the
periplasm, permitting correct disulphide folding of periplasmic and secreted proteins.
Loss of CydDC results in the periplasm becoming more oxidising and abolishes the
assembly of functional bd-type respiratory oxidases that couple the oxidation of
ubiguinol to the reduction of oxygen to water. In addition, CydDC-mediated redox con-
trol is important for haem ligation during cytochrome ¢ assembly. Given the diverse
roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of
virulence factors, this ABC transporter is an intriguing system for researchers interested
in both the physiology of redox perturbations and the rale of low-molecular-weight
thiols during infection.

ABBREVIATIONS

ABC transporter A'l'P-binding cassette type transporter

Cem cytochrome ¢ maturation

FNR fumarate and nitrate reductase
GSH reduced glutathione

GSSG glutathione disulphide
H,0; hydrogen peroxide

NO nitric oxide

O,

superoxide

ONOO  peroxynitrite
PMF proton motive force

ROS reactive oxygen species

SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
UPEC uropathogenic L. coli
Apy,  transmembrane sodium potential

+ .
ApH™ transmembrane proton potential

AY clectrical potental

1. OVERVIEW

The bacterial periplasm is an oxidising environment that 1s suitable for

the formation of disulphide bonds in periplasmic and secreted proteins, a

process that does not occur in the more reducing location of the cytoplasm.
As well as the role of CydDC in disulphide folding, of particular interest, is

the requirement of this transporter for the correct assembly of various respi-

ratory complexes, including periplasmic b- and etype cytochromes and the
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bd-type terminal oxidase complexes. This review will focus on the respira-
tory complexes that rely upon CydDC activity for their assembly, the struc-
ture and function of the CydDC ATP-binding cassette type transporter
(ABC transporter) and the role of CydDC in general bacterial physiology
and pathogenicity.

) 2. THE ESCHERICHIA COLI TERMINAL OXIDASES:
ASSEMBLY AND FUNCTION

2.1 Cytochrome bo’

The bo'- and bd-type oxidases of E. coli both catalyse the two-electron oxi-

dation of ubiquinol by molecular oxygen within the cytoplasmic membrane,
concomitantly generating a proton gradient across the membrane that can be
utilised by bacterial cells to produce ATP for use as an energy source. In
addition to generating a proton gradient via the vectorial translocation of
protons that is linked to quinol reduction and oxidation, cytochrome bo’
1s also able to directly pump protons across the membrane (Puustinen,
Finel, Haltia, Gennis, & Wikstrom, 1991) and has an H':e ratio of 2.
The site of oxygen reduction in cytochrome bo' is a haem—copper binuclear
oxygen-reactive centre, making it a member of the haem—copper superfam-
ily of terminal oxidases (Anraku, 1988) that has been extensively studied.
The cyoABCDL genes encode subunits 1, II, IIT and IV of the cyto-
chrome bo’ complex and a protohaem farnesyltransferase (haem o synthase),
respectively (Minghetti et al., 1992; Saiki, Mogi, & Anraku, 1992). The
assembly pathway for cytochrome bo’ is an ordered process wherein subunits
[I1 and IV assemble first, followed by subunit I and finally subunit 11
(Stenberg, von Heijne, & Daley, 2007). CyoABC 1s homologous to the core
subunits of the aas-type cytochrome ¢ oxidase (Lemieux, Calhoun, Thomas,
Ingledew, & Gennis, 1992) both in terms ot their primary sequence (Cotter,
Chepuri, Gennis, & Gunsalus, 1990; Saraste, Sibbalda, & Witanghoferb,
1988) and structure (Abramson et al., 2000; Gohlke, Warne, & Saraste,
1997). A crystal structure of the entire cytochrome bo’ terminal oxidase
complex has been determined at 3.5 A resolution (Abramson et al., 2000)
that reveals 25 transmembrane helices with a ubiquinone-binding site within
the membrane domain of subunit I (Abramson etal., 2000). The entire com-
plement of redox centres reside within subunit [, the largest of the four sub-
units. A low-spin haem b associated with a copper ion (Cuy) (Puustinen &
Wikstrom, 1991; Puustinen et al., 1991) is thought to act as an electron
donor to reduce a binuclear centre composed of a high-spin haem o and
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another copper 1on (Cug): this 1s where oxygen reduction takes place
(Salerno, Bolgiano, Poole, Gennis, & Ingledew, 1990).

2.2 Cytochrome bd-I

The first description of a spectrally distinctive haem protein in bacteria, with
an absorbance in the reduced state near 630 nm was reported by Yaoi,
Tamiya, Negelein and Gerischer in the 1920s and 1930s in L. coli and Azo-
tobacter (for a fascinating historical overview, see Keilin, 1966). Other
authors later confirmed the existence of such a pigment in numerous bac-
teria, but 1ts identification as an oxidase was made only when Chance and
colleagues applied Warburg’s photochemical action spectrum method
(Castor & Chance, 1959). The oxidase was called cytochrome a», to under-
line its distinction from cytochrome a; (absorbance in the reduced state near
590-595 nm) and cytochromes a and a5 (absorbance in the reduced state
near 600-605 nm), the last two being the CO-unreactive and -reactive
components, respectively, of cytochrome ¢ oxidase in mitochondria and cer-
tain bacteria. These spectral characteristics were later attributed to the ter-
minal respiratory oxidase cytochrome bd in E. coli, which was later
renamed to cytochrome bd-1 tollowing the discovery of another bd-type
oxidase 1n this organism (Section 2.3).

Cytochrome bd-1 is confined to the prokaryotic world and 1s well
characterised in E. coli. Unlike cytochrome bo', cytochrome bd-1 does not
contain copper and so is not a member of the haem—copper oxidase super-
family. Instead, cytochrome bd-1 utilises an unusual di-haem oxygen-
reactive site (Borisov et al., 2013; Junemann, 1997; Rothery & Ingledew,
1989). All known members of the bd-family use quinol as a substrate, receiv-
ing electrons commonly from either ubiquinol or menaquinol. With a
three-dimensional structure yet to be elucidated, existing data show that
cytochrome bd-1 is a trimer of three membrane polypeptides, subunits
I (CydA) and II (CydB) (Kita, Konishi, & Anraku, 1984) and CydX (Van
Orsdel et al.,, 2013). Three haems are associated with the oxidase in a
1:1:1 stoichiometry peroxidase complex. Two high-spin haems (d and
bsys) are thought to form the di-haem active site where oxygen is reduced
(Arutyunyan et al., 2008; Borisov & Verkhovsky, 2013; Hill, Alben, &
Gennis, 1993; Rappaport, Zhang, Vos, Gennis, & Borisov, 2010; Vos,
Borisov, Liebl, Martin, & Konstantinov, 2000), and modelling of the exci-
tonic interaction between haems d and bsys has led to an estimated inter-
molecular distance of 10 A (Arutyunyan et al, 2008). Despite the
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proximity and evidence for functional cooperation (Vos et al., 2000), doubt
has been cast upon the existence of a di-haem active site as no spin coupling
has been observed between the haems (Junemann, 1997). The third haem
cofactor is a hexacoordinate low-spin haem bssg located within subunit I that
1s responsible for quinol oxidation that supplies electrons to the di-haem site
for the reduction of molecular oxygen to water.

Cytochrome bd-1 contributes to the proton motive force (PMF) via the
vectorial translocation of protons that is linked to quinol reduction and oxi-
dation (Calhoun, Oden, Gennis, Demattos, & Neijssel, 1993), but unlike
cytochrome bo’ is unable to directly pump protons (Puustinen et al., 1991)
and is therefore considered less efficient in bioenergetic terms (H':e
ratio=1). Despite having a reduced contribution to the PMF, cytochrome
bd-1 does facilitate aerobic respiration under conditions of low oxygen due
to a very high affinity for oxygen: bd-1 has a K,,, of 32£8 nM (D’mello,
Hill, & Poole, 1996) compared to a K,,, of 0.016-0.35 pM for cytochrome
bo" (D’mello, Hill, & Poole, 1995). It is likely that the di-haem active site
plays a role in this high affinity for oxygen (Borisov et al., 2002), promoting
growth in microaerobic environments.

2.2.1 The cydABX Genes

Until recently, cytochrome bd-1 was generally believed to be comprised of
two subunits encoded by eydA (subunit 1: 57 kDa) and cydB (subunit 11:
43 kDa) (Calhoun, Newton, & Gennis, 1991; Green et al, 1988;
Kranz & Gennis, 1983) located at 16.6 min on the E. coli genetic map
(Bachmann, 1990; Calhoun et al., 1991). The molecular weights of subunits
[ and IT determined by sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis (SDS-PAGE) (Miller & Gennis, 1983) are consistent with predicted
masses calculated from the protein sequences (Green et al., 1988).

Two open-reading frames, ybgl: and ybeT are found at the 3’ end of the
cydAB genes which together are thought to form an operon; cyd ABET
(Fig. 1; Muller & Webster, 1997). The 4-kDa YbgT protein was shown
to co-purify with CydAB and is believed to be a part of the complex
(Van Orsdel et al., 2013), and ybgT has since been renamed cydX. Cells

Figure 1 The cydABX locus of E. coli. The cytochrome bd-l terminal oxidase is encoded
by the cydA-X genes, but no role in cytochrome bd-1 assembly/function has been iden-
tified for ybgE.



6 Louise V. Holyoake et al.

lacking CydX exhibit diminished oxidase activity which can be restored by
the addition of cydX on a plasmid (Van Orsdel etal., 2013) and silver staining
shows that CydX is present in stoichiometric amounts with CydA and CydB
(Hoeser, Hong, Gehmann, Gennis, & Friedrich, 2014), confirming CydX as
a third subunit of cytochrome bd-1. CydX is required for either the insertion
or the stability of haem d and bso5 thought to make up the di-haem active site
of cytochrome bd-1; UV—visible difference spectroscopy revealed that the
signals of haem d and bsy5 are lost when CydA and CydB are not accompa-
nied by CydX. However, no role in cytochrome bd-1 assembly/function has
been 1dentified for ybgE, with its deletion having no effect on phenotypes
typically observed for cydA or cydB mutants (Van Orsdel et al., 2013).

Beyond ¢ydABX, two additional genes cydC and cydD together form an
operon to encode a heterodimeric ABC transporter. This transporter is
essential for assembly of functional cytochrome bd-1 (Bebbington &
Williams, 1993; Georgiou, Hong, & Gennis, 1987; Poole, Gibson, &
Wu, 1994; Poole et al., 1993). In its absence, CydA and CydB are still
synthesised and inserted into the membrane, but the oxidase lacks haem
groups essential for function (Georgiou et al., 1987). CydDC exports two
low-molecular-weight thiols, glutathione and cysteine, from the cytoplasm
to the periplasmic space (Pittman, Robinson, & Poole, 2005; Pittman et al.,
2002). However, exogenous addition of either of these thiols to a strain lac-
king CydDC does not restore cytochrome bd-1 assembly, so the molecular
mechanism via which CydDC contributes to cytochrome bd-1 assembly
remains unclear.

2.2.2 Spectral Characteristics

Cytochromes display a variety of spectral characteristics that depend upon
the local environment of the haem-binding site within the protein as well
as the structural attributes of the haem cofactor itself. Reduced/ferrous cyto-
chromes produce three main absorbance peaks in the visible UV spectrum
termed the a, B and y (or Soret) peaks, and the wavelength of the a-region is
usually used to classify these cofactors. The a- and B-bands of the reduced
haem bssy of cytochrome bd-1 exhibit maxima at 560-562 and 531-532 nm,
respectively (Bloch, Borisov, Mogi, & Verkhovsky, 2009; Koland, Miller, &
Gennis, 1984; Lorence, Koland, & Gennis, 1986). Reduced haem d of cyto-
chrome bd-11n whole cells has an a-band peak at 628-630 nm. However, due
to a high oxygen affinity, the d-type haem usually exists in the stable oxygen-
ated ferrous form, which is characterised by an absorption band with
a maximum at 647-650 nm n the absolute absorption spectrum (Poole,
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Kumar, Salmon, & Chance, 1983). The high-spin haem bsg5 was first anno-
tated as cytochrome a; due to a similarity with the absorbance characteristics
of cytochrome a; of other bacteria (Castor & Chance, 1959). Reduced minus
oxidised difference spectralater showed an a-band at 595 nm, astrong -band
near 560 nm and a trough near 645 nm. This difference spectrum was
similar to that of protohaem IX (haem b) from cytochrome ¢ peroxidase,
suggesting the presence of an additional b-type haem within cytochrome
bd-1, which explains why the a; cofactor was renamed to cytochrome bsos
(Lorence et al., 1986).

Cytochrome bd-1 has a complex Soret region with a contribution from
all three haems. In reduced minus oxidised difterence spectra, the Soret band
spectra for haem bssy has a maximum and minimum of 429.5 and 413 nm,
respectively, haem bsos has a maximum and minimum of 439 and 400 nm,
respectively (Vos et al., 2000), and haem d exhibits maxima and minima at
430 and 405 nm, respectively. The spectral contribution of haem d to the
Soret band is smaller than its contribution in the a-band and smaller than
the contribution of either of the b-type haems.

2.2.3 Membrane Topology and Cofactor Binding

Despite the absence of an X-ray structure of cytochrome bd-1, it is known
that all three subunits of cytochrome bd-I are integral membrane proteins.
Secondary structure prediction models suggest that CydA contains nine
membrane-spanning helices, CydB contains eight membrane-spanning
helices (Osborne & Gennis, 1999) and CydX consists of just one
membrane-spanning helix (Fig. 2). A large periplasmic loop between helices
six and seven of subunit [ 1s involved in quinol binding and is consequently
known as the Q loop (Dueweke & Gennis, 1991; Matsumoto et al., 2006;
Mogi et al., 2006). Some cytochrome bd-1 oxidases such as those found in
L. coli and Azotobacter vinelandii contain an insert in the C-terminus of the
Q loop, but in a majority of bd-type oxidases this insert is not present
(Osborne & Gennis, 1999; Sakamoto etal., 1999). As of yet, the significance
of this insertion is unclear. Site-directed mutagenesis has revealed that two
residues within the QQ loop, Lysine-252 and Glutamate-257 are required for
cytochrome bd-1 oxidase activity (Mogi et al., 2006) and are thought to play
a role in quinol binding,. Shifts in ‘reduced minus oxidised’ spectra following
Glu257 mutation indicate a close proximity of this residue to haem bssg,
suggesting that Glu257 not only binds quinols but also participates in elec-
tron transfer from the quinol to haem bssg (Mogi et al., 20006).
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Site-directed mutagenesis studies have been used alongside spectroscopic
methods to reveal that highly conserved Histidine-186 and Methionine-393
of CydA are axial ligands of bssg (Fang, Lin, & Gennis, 1989; Kaysser,
Ghaim, Georgiou, & Gennis, 1995; Spinner et al., 1995). The positive
charge of the conserved Arginine-391 residue has a role in stabilising the
reduced form of haem bssg and is required for oxidase activity (Zhang,
Hellwig, Osborne, & Gennis, 2004), and Histidine-19 of CydA provides
the essential axial ligand for bsys (Sun etal., 1996). An E99L mutation within
CydA abolishes the haem d spectral signals (Bloch et al., 2009), supporting
the idea that Glutamate-99 could be the axial ligand to haem d (Mogi et al.,
2006). All three haem cofactors appear to be located on the periplasmic side
of cytochrome bd-1 (Zhang et al., 2004), which presents the problem of how
protons are translocated across the membrane from the cytoplasm to the site
of oxygen reduction which occurs on the periplasmic side. As the translo-
cation of protons is unlikely to involve inter-haem transfer, focussing instead
on conserved amino acid residues that can be reversibly protonated has
implicated glutamates 99 and 107 within transmembrane helix 111 of CydA
in proton translocation (Osborne & Gennis, 1999).

In the absence of CydB, CydA is still integrated into the cytoplasmic
membrane, and haem bssg is still incorporated but the high-spin haems d
and bsys are absent from the cytochrome subunits (Newton & Gennis,
1991). In an attempt explain this loss of haem groups, it has been suggested
that the two high-spin haems are located at the interface between CydA and
CydB subunits. Loss of cydDC abolishes haem cofactor incorporation into
cytochrome bd-I1 but the CydAB polypeptides are still inserted into the
membrane (Georgiou et al.,, 1987). Synthesis of this apocytochrome bd-1
is also observed in haem-deficient cells (Calhoun et al., 1991), implying that
haem insertion is the last step of cytochrome bd-I assembly.

2.3 Cytochrome bd-l

2.3.1 The appBC Genes

In the years between the discovery of cytochrome a> (later called cyto-
chrome d; for references, see Poole, 1983), there appeared to be no suspicion
that a second type of cytochrome d might exist: numerous biochemical and
physiological studies were made (reviewed in Poole, 1983) on the assump-
tion that cytochrome d was functionally, structurally and genetically homog-
enous. That complacency was shattered in 1991 when an operon was
discovered (Dassa et al., 1991) comprising three genes upstream of appA,
an acid phosphatase gene that is regulated positively in response to oxygen



