Sixto Giménez · Juan Bisquert Editors

Photoelectrochemical Solar Fuel Production

From Basic Principles to Advanced Devices

Sixto Giménez • Juan Bisquert Editors

Photoelectrochemical Solar Fuel Production

From Basic Principles to Advanced Devices

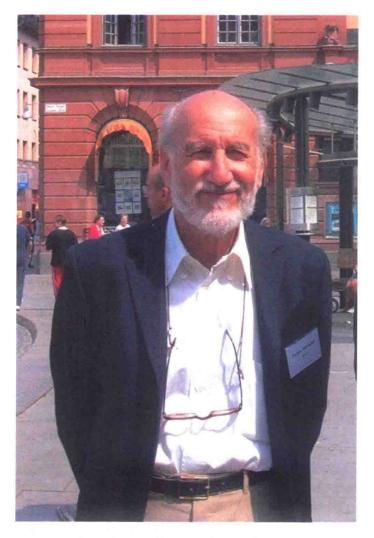
Editors
Sixto Giménez
Institute of Advanced Materials (INAM)
Universitat Jaume I
Castelló de la Plana, Spain

Juan Bisquert Institute of Advanced Materials (INAM) Universitat Jaume I Castelló de la Plana, Spain

ISBN 978-3-319-29639-5 DOI 10.1007/978-3-319-29641-8 ISBN 978-3-319-29641-8 (eBook)

Library of Congress Control Number: 2016936880

© Springer International Publishing Switzerland 2016


This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

To Professor Pedro Salvador, a pioneer of photoelectrochemistry

Preface

The supply of water, food, and energy on a global scale constitutes the most relevant challenge to sustain humankind development in the twenty-first century. Focusing on energy, the wide availability of resources is essential to meet the needs of a growing world population with increasing living standards and hence high energy demand. In this context, chemical fuels constitute a key energy vehicle in the global scheme, since energy is available in a form that can be easily stored and used upon demand. Fossil fuels are excellent for transportation and generation of electricity and heat, but they arise from finite reserves that will be depleted in a few decades. In addition, burning oil and natural gas produces heavy pollution and greenhouse effect, leading to progressive warming of the earth crust with the concomitant risks of climate change. Consequently, we urgently need chemical fuels that can be derived from a widely available source, and that yield a benign residue when converted into other energy vectors. The production of a green and renewable chemical fuel is a major challenge for science and technology.

Water and sunlight are abundant and decentralized natural resources, which constitute ideal candidates for fuel production. Sunlight is the largest readily available source of energy in the world, and water can be split into O2 and H2, the latter being one of the most valuable energy vectors due to its high energy density and its clean combustion in fuel cells. Turning solar photons into a convenient fuel that stores energy as chemical bonds, either H2 gas or a hydrocarbon derived by further dark reactions, has been a longstanding goal of research, particularly at those times when conventional energy sources experienced trouble. Inspired by natural photosynthesis, the process satisfying the energy needs of all living matter on earth, we can prepare inorganic or organic semiconductor materials that absorb photons and convert them into energetic electronic carriers. These carriers endowed with excess free energy can launch desired chemical and electrochemical reactions, provided that their forward pathway probability is larger than recombination rates.

Semiconductor materials have demonstrated their ability to split water into separate O₂ and H₂ gases, or to reduce CO₂, and have been investigated for over

viii Preface

40 years in the scientific field of photoelectrochemistry. The oil scarcity during the supply crisis in the 1970s was a major driving force to search for a semiconductor material capable of extensive energy generation based on the photoelectrochemical properties of the semiconductor/electrolyte interface. In principle one could employ abundant materials processed by low-cost synthetic procedures (as titanium dioxide or iron oxide) for the large-scale production of solar fuels. However, in practice, these semiconductors face important limitations, rendering the conversion efficiency from solar photons to hydrogen very low. It is well recognized that these materials are useful model systems but far from a technologically viable solution.

There exist a number of stringent requirements for a semiconductor to transform water into hydrogen at high performance, assisted only by the solar radiation. A principal factor impeding the viability of such device is the difficult balance between two opposing properties. The first is the necessity of a narrow semiconductor bandgap to realize the optical absorption of a large portion of the solar spectrum, as photons with energy less than the bandgap cannot be absorbed. On the other hand, in order to drive water oxidation and reduction reactions involving significant overpotential, a separation of valence and conduction band in the semiconductor quite in excess of the water splitting free energy of 1.23 eV is needed. Furthermore, in order to efficiently realize all the functions of charge separation, collection, and charge transfer across a semiconductor/electrolyte interface, excellent semiconductor properties are needed, including high conductivity, low recombination rates, and excellent surface catalytic properties. Another important drawback is related to the fact that some materials with the required properties lack the necessary stability under photoelectrochemical operation due to decomposition caused by the photogenerated carriers. All in all, the "artificial photosynthesis" based on a single successful semiconductor photoelectrode could not be realized.

Nevertheless, the demand for renewable primary energy vectors such as solarbased H₂ or hydrocarbon fuel constitutes an urgent priority in the near future global energy context. Recently, the research community has started a sustained effort towards the realization of the photoelectrochemical solar fuel production, adopting new avenues of research and shaping a dynamic and rapidly growing field. The current activity has benefited from the basic "classical" knowledge on semiconductor photoelectrochemistry established in the last century, combined with an expanded array of innovative tools and scientific directions, and together with the technological research needed for the demonstration of viable device engineering methods. The present research on solar fuel production applies and develops new methods of nanomaterials production, incorporates advanced photovoltaic devices, designs original catalytic materials and coatings, and introduces new semiconductor materials, as well as new nanoscale, electrochemical, optoelectronic, computational, and surface characterization techniques. This development of the field adopts a broad perspective with respect to the candidate materials and device configurations to target a low-cost high-conversion-efficiency and durable device. A combination of mixed metal oxides, nonoxide conventional semiconductors, and molecular systems is exploited in order to find the most suitable materials and

Preface ix

interfaces. The use of combinatorial methods for high-throughput studies involves the investigation of ternary or quaternary compositions, maximizing the possibilities to optimize optical, electronic, and catalytic properties contributing to efficient solar fuel production.

The combination of photoelectrochemical and photovoltaic concepts, catalysis, advanced materials and nanostructuring strategies, facilitates a variety of routes, which may produce important progress towards effective applications. Indeed, different approaches towards reliable technological devices coexist in the research arena, which show potential advantages as well as drawbacks. As mentioned earlier, it is well established that capturing sunlight with a single junction material is a too demanding task for a high voltage application as water splitting. Consequently, one of the most promising approaches involves the combination of different light absorbing materials with complementary spectral properties adding up the voltages in tandem connection. The strategy to separate device functions in different materials and interfaces relaxes the stringent conditions that a single semiconductor must satisfy to perform all water splitting steps. Therefore light active semiconductors can be coupled with suitable catalysis layers. However, when different junctions, parts, and connections are required, there is a price to pay in terms of increased complexity and decreased integration. Therefore charge separation at semiconductor/electrolyte junctions, where electrochemical reactions also occur, continues to be a favorite research topic. On the other extreme, one may couple effective PV cells with dark catalysis. As a compromise, a photovoltaic cell can supply additional voltage to a photoelectrochemical cell.

In summary, a wide variety of approaches exists towards the established goal and often involves device configurations that use different types of fundamental properties. However, a strong connection occurs between the different methods. The innovations and discovery obtained in the massive research effort towards the solar fuel production eventually may become of broader interest and significance. Advances in one particular topic of research are likely to fertilize others. This is why it appears useful for students and researchers to present a general perspective of the field on a unified basis, starting from the fundamental knowledge set of established photoelectrochemical and catalysis concepts, and moving to a variety of materials and devices that constitute the vanguard of investigation in this field. This is the general purpose of this book, aiming at introducing the main trends of current research in photoelectrochemical solar fuel production from the standpoint of a firm scientific basis.

The book is organized in three topical parts, starting with fundamentals, followed by the experimental protocols and characterization techniques. The final and larger part explains the main types of materials and devices applications. The introductory chapter by L. M. Peter is a summary of the thermodynamics and kinetics properties of the semiconductor/electrolyte interface, which provides an understanding of how band bending combined with electron transfer model explains the photocurrent. This analysis shows the central role of surface catalysis in all fuel production cells; hence two chapters examine the central reactions that are considered today for solar fuel production. Doyle and Lyons explain the

x Preface

properties of the oxygen evolution reaction, which slow kinetics is a major barrier for the expansion of solar fuel production. Sudhagar, Nakata, and coworkers discuss the materials and properties for catalytic photoreduction to form hydrogen gas or to reduce CO₂.

The second part of the book addresses the experimental methods that are used to understand and guide the development of solar fuels materials, interfaces, and devices. First W. Smith provides a broad and detailed view of the main types of devices that are currently investigated, and he describes their parts, principles of operation, as well as the methods of measurement for the characterization of operational properties. Jaegermann, Kaiser, and coworkers critically discuss the different alternatives of solar fuel production approaches. The second part of the chapter gives fundamental insights into the structure of the critical interfaces, like the formation of semiconductor/passivation layer/co-catalyst/electrolyte interfaces. A detailed view of such properties is obtained by extensive application of photoelectron spectroscopies. Bisquert, Giménez, and coworkers describe the recent advances in the application of impedance spectroscopy technique in photoelectrochemical system, aiming to develop a profound characterization of kinetic steps that occur in the formation of photocurrent, with particular attention to the role of surface states in the competition between charge transfer and recombination. These previous two chapters recognize the complexity of the catalyzed interface and the many interactions and effects that determine the dynamics of the photoelectrochemical behavior. Subsequently Lin and Boettcher address this central problem and describe advanced characterization methods able to examine separate components of the interface during operation.

The last part of the book is devoted to the description of relevant materials and devices for photoelectrochemical solar fuel production. The first four chapters provide a detailed panorama of the most advanced materials developed in the last years. Abdi, Berglund, and Van de Krol describe the current research status of multinary metal oxides and discuss the main challenges of using these materials as photoelectrode materials along with future outlook for their application. Fujii provides an extensive description of nonoxide materials, particularly nitrides, chalcogenides, and arsenides, emphasizing the controllability of their electronic properties and the strategies needed to enhance the stability of these materials under solar fuel production conditions. Skorupska and Parkinson review the main advances on combinatorial synthesis and screening of oxide-based materials providing a detailed overview of the experimental methods employed for high-throughput combinatorial studies, focusing on oxygen evolution photoanodes, hydrogen evolution photocathodes, and electrocatalysts for both oxygen and hydrogen evolution. Thorne, He, and Wang discuss how the nanoscale synthesis of materials entails both advantages and disadvantages for the performance of photoelectrodes. They describe the morphologies of nanostructured materials as well as some of the most relevant synthetic methods and critically discuss the performance of nanostructured photoelectrodes compared with their bulk counterparts. The last two chapters of this part illustrate how optimized materials can be integrated in advanced devices, based on different principles, targeting Preface xi

technological exploitation of photoelectrochemical solar fuel production. Sivula extensively describes how the use of tandem devices, combining two or more semiconductor junctions, can lead to efficient devices with up to 30 % conversion efficiency even assuming large losses. Particularly, key examples of tandem cells are discussed, taking into account the choice of semiconductor material, the design geometry of the device with respect to resistance losses due to membranes and ionic conduction, and techno-economic considerations. Finally, Coggins and Meyer provide an overview of the dye-sensitized photoelectrosynthesis cell devices, covering the fundamentals of the device concept, as well as the different strategies employed to achieve competitive efficiencies in prototype device.

Castelló de la Plana, Spain

Sixto Giménez Juan Bisquert

Contributors

Fatwa F. Abdi Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Berlin, Germany

Sean P. Berglund Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Berlin, Germany

Luca Bertoluzzi Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, Spain

Juan Bisquert Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, Spain

Shannon W. Boettcher Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA

Michael K. Coggins Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Eastman Chemical Company, Kingsport, TN, USA

Anitha Devadoss Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Richard L. Doyle Electrochemical Materials and Energy Group, Tyndall National Institute, University College Cork, Cork, Ireland

Katsushi Fujii Global Solar Plus Initiative, The University of Tokyo, Tokyo, Japan

Akira Fujishima Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Research Institute for Science & Technology, Tokyo University of Science, Noda, Chiba, Japan

Sixto Giménez Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, Spain

Yumin He Department of Chemistry, Boston College, Chestnut Hill, MA, USA

Isaac Herraiz-Cardona Institute of Advanced Materials (INAM), Universität Jaume I, Castelló, Spain

Wolfram Jaegermann Institute of Materials Science and Excellency Graduate School for Energy Science and Engineering, Jovanka-Bontschits-Straße 2, Technical University Darmstadt, Darmstadt, Germany

Bernhard Kaiser Institute of Materials Science and Excellency Graduate School for Energy Science and Engineering, Jovanka-Bontschits-Straße 2, Technical University Darmstadt, Darmstadt, Germany

Joachim Klett Institute of Materials Science and Excellency Graduate School for Energy Science and Engineering, Jovanka-Bontschits-Straße 2, Technical University Darmstadt, Darmstadt, Germany

Roel van de Krol Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Berlin, Germany

Fuding Lin Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA

Michael E.G. Lyons Trinity Electrochemical Energy Conversion and Electrocatalysis Group, School of Chemistry & AMBER National Centre, CRANN Research Institute, Trinity College Dublin, Dublin 2, Ireland

Thomas J. Meyer Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Kazuya Nakata Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Research Institute for Science & Technology, Tokyo University of Science, Noda, Chiba, Japan

Bruce A. Parkinson Center for Photoconversion & Catalysis, University of Wyoming, Laramie, WY, USA

Laurence M. Peter Department of Chemistry, University of Bath, Bath, UK

Nitish Roy Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Kevin Sivula Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Katarzyna Skorupska Department of Chemistry, University of Wyoming, Laramie, WY, USA

Center for Photoconversion & Catalysis, University of Wyoming, Laramie, WY, USA

Contributors xxi

Wilson A. Smith Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

Pitchaimuthu Sudhagar Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Chiaki Terashima Photocatalysis International Research Center (PIRC), Tokyo University of Science, Noda, Chiba, Japan

Research Institute for Science & Technology, Tokyo University of Science, Noda, Chiba, Japan

James E. Thorne Department of Chemistry, Boston College, Chestnut Hill, MA, USA

Raman Vedarajan School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan

Dunwei Wang Department of Chemistry, Boston College, Chestnut Hill, MA, USA

Jürgen Ziegler Institute of Materials Science and Excellency Graduate School for Energy Science and Engineering, Jovanka-Bontschits-Straße 2, Technical University Darmstadt, Darmstadt, Germany

List of Acronyms

AACVD Aerosol-assisted chemical vapor deposition

AAO Anodized aluminum oxide

ABPE Applied bias photon to current conversion efficiency

AEM Anion exchange membrane

AIST (National Institute of)Advance Industrial Science and Technology

ALD Atomic layer deposition

AM Air mass

APCE Absorbed photon to current conversion efficiency APCVD Atmospheric pressure chemical vapor deposition

APT Atom-proton transfer ARUPS Angle-resolved UPS

AZO Aluminum doped zinc oxide

bb Band bending

BPM Bipolar membrane BSCF Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-d}

CB Conduction band

CBD Chemical bath deposition

CE Counter electrode

CEM Cation exchange membrane
CHT Combinatorial high throughput

CNL Charge neutrality level

CoBi Cobalt-based catalysts deposited from borate electrolytes

Co-OEC Co oxygen evolved complex

CoPi Cobalt-based catalysts deposited from phosphate electrolytes

CUS Coordinately unsaturated CV Cyclic voltammetry

CVD Chemical vapor deposition

DC Direct current

DFT Density functional theory

DI Distillate water

DOE U.S. Department of Energy

DOS Density of states

DSPEC Dye-sensitized photoelectrosynthesis cells

DSSC Dye-sensitized solar cell
DWE Dual-working-electrode

EATP Electron-atom-proton transfer

EC Electrochemically prepared amorphous oxide

EC Electrochemical converter

EC Equivalent circuit EC Electrocatalyst

ECR Electron cyclotron resonance

EDX Energy dispersive X-ray spectroscopy
EFRC Energy Frontier Research Center
EPR Electron paramagnetic resonance

EQE External quantum efficiency

ESCA Electron spectroscopy for chemical analysis

eV Electron volts FF Fill factor

FTO Fluorine doped tin oxide FVD Flame vapor deposition FWHM Full width at half-maximum

g Gaseous

HArPoON Heterogeneous anodes rapidly perused for oxygen overpotential

neutralization

HBE Hydrogen binding energy
HEC Hydrogen evolution catalyst
HER Hydrogen evolution reaction

HF Hydrofluoric acid

HOMO Highest occupied molecular orbital HTE High-throughput experimentation

IMPS Intensity-modulated photocurrent spectroscopy IPCE Incident photon to current conversion efficiency

IQE Internal quantum efficiency
IS Impedance spectroscopy
ITO Indium doped tin oxide

JCAP Joint Center for Artificial Photosynthesis

l Liquid

LCAO Linear combination of atomic orbitals

LED Light-emitting diode

LMMR Light-modulated microwave reflectance

MBE Molecular beam epitaxy
MCC Molecular cobaltate clusters

MD Molecular dynamics

MeCN Acetonitrile

MIGS Metal-induced gap states
MIS Metal insulator semiconductor
MLCT Metal to ligand charge transfer

MOCVD Metal-organic chemical vapor deposition

MOS Metal oxide semiconductor MPP Maximum power point NHE Normal hydrogen electrode

oc Open circuit occ Occupied

OCP Open circuit potential
OEC Oxygen evolution catalyst
OEC Oxygen evolving complex
OER Oxygen evolution reaction
OHP Outer Helmholtz plane

op Operational

ORR Oxygen reduction reaction
OSDC Optical scanning droplet cell

ox Oxidized

PC Propylene carbonate

PCET Proton-coupled electron transfer

PDS Potential determining step

PEC Photoelectrochemical/photoelectrochemistry PECVD Plasma-enhanced chemical vapor deposition

PEM Proton exchange membrane PES Photoelectron spectroscopy

ph Photo

PL Photoluminescence
PLD Pulsed laser deposition
PMMA Poly(methyl methacrylate)

PS Polystyrene
PSII Photosystem II
PTFE Polytetrafluoroethylene

PV Photovoltaic QD Quantum dot

QDSSC Quantum dot sensitized solar cell

RDS Rate determining step RE Reference electrode

red Reduced

RHE Reversible hydrogen electrode

SC Semiconductor

SCE Standard calomel electrode

SCLI Semiconductor electrolyte interface

SCR Space charge region

SEAL Solar Energy Activity Laboratory

SECM Scanning electrochemical microscopy

SEM Scanning electron microscopy

SETI Search for Extraterrestrial Intelligence SHArK Solar hydrogen activity research kit

SHE Standard hydrogen electrode
SLJ Semiconductor liquid junction
SoLiAS Solid/liquid analysis system
SPM Scanning probe microscope
STFCE Solar-to-fuel conversion efficiency

STFCE Solar-to-fuel conversion efficiency
STH Solar-to-hydrogen conversion efficiency
STHCE Solar-to-hydrogen conversion efficiency

SWE Single-working-electrode

SXPS Soft X-ray photoelectron spectroscopy
TC Thermally prepared crystalline oxide
TCO Transparent conducting oxide
TEM Transmission electron microscopy

UHV Ultra-high vacuum

UNC University of North Carolina at Chapel Hill

UNC University of North Carolina at Chapel Hill Energy Frontier Research

EFRC Center unocc Unoccupied

UPS Ultraviolet photoelectron spectroscopy

UV Ultraviolet

UV-vis Ultraviolet-visible (spectroscopy)

vac Vacuum level
VB Valence band
VLS Vapor-liquid-solid
WE Working electrode

XANES X-ray absorption near edge spectroscopy

XAS X-ray absorption spectroscopy XPS X-ray photoelectron spectroscopy

XRC X-ray rocking curve XRD X-ray diffraction

YAG Yttrium aluminum garnet

Contents

1	Semiconductor Electrochemistry	2
2	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design	4]
3	Hydrogen and CO ₂ Reduction Reactions: Mechanisms and Catalysts	105
Part II Methods		
4	Photoelectrochemical Cell Design, Efficiency, Definitions, Standards, and Protocols	163
5	Interface Engineering of Semiconductor Electrodes for Photoelectrochemical Water Splitting: Application of Surface Characterization with Photoelectron Spectroscopy Wolfram Jaegermann, Bernhard Kaiser, Jürgen Ziegler, and Joachim Klett	199
6	Analysis of Photoelectrochemical Systems by Impedance Spectroscopy	281

xiii