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To my former students and colleagues in econometrics



Preface

Some years ago I decided that the lecture notes I have been distributing to my
graduate students in econometrics for many years, being quite different in many
ways from existing textbooks, might be worth publishing as a book. This is the
result.

1 am indebted to many colleagues and students. I benefited in Chapter 1 from
helpful suggestions from Simo Puntanen, George Styan, and John Geweke, as
well as my then colleague Christopher Sims. Chapters 2 and 4 build on my early
(1964) collaboration with Malempati M. Rao. In Chapter 3, I greatly benefited
from stimulating conversations with Paul Garrett of the University of Minnesota
Mathematics Department, as well as the assistance of his colleague Joel Roberts
who supplied me the proofs of Lemma 3.4.3 and Theorem 3.4.1 (but I do not hold
him responsible for my diagrammatic interpretations). Regarding Chapter 5, I am
especially indebted to Morris L. Eaton with whom I spent many hours working out
proofs of two lemmas underlying extensions of James—Stein estimation. Chapter 6
builds on a 1968 paper undertaken in collaboration with my former student K. Rao
Kadiyala as well as with the two referees (and subsequent coauthors) of that paper,
on estimation of a mean with autoregressive residuals; this was followed up by my
1979 paper on least-squares estimation of linear trend. Chapter 6 adds an analysis
of alternative methods of estimation due to Prais and Winsten as well as to that of
Cochrane and Orcutt. In this chapter (as well as the next), I benefited from interac-
tions with my late colleague Clifford Hildreth. Chapter 7 builds on an unpublished
1965 paper of mine cited by Judge et al. (1985, pp. 282-6) and others. Elizabeth
Dolan did the initial work for the three diagrams, which was converted to TEX
(the software invented by Donald E. Knuth, author of The TeXbook) by Augus-
tine Mok, using PICTizX (authored by Michael J. Wichura). This software has been
used for diagrams throughout the book. In Section 8.6 of Chapter 8 I was greatly
helped by Lei (Nick) Guo, an economics graduate student, in working out in great
detail solutions to equations containing matching terms, needed to derive explicit
expressions for the Gram—Charlier and Edgeworth series. I later received a nice
expository paper from Brian Shea, a statistics graduate student, also partly cov-
ering this ground. Stephen Stigler kindly sent me a copy of Anders Hald’s 2002
monograph on the history of asymptotic exparsions.



xiv  Preface

One way in which this book departs from existing textbooks is that the cov-
erage is less exhaustive and more selective. An unfortunate result is that some
topics such as nonlinear regression, Granger and Sims causality, and unit-root
tests, as well as three-stage least squares, tests for overidentification, specification
error in sumultaneous-equations models, etc., are omitted entirely. In exchange,
some topics that seldom get covered in econometrics textbooks, such as linear
aggregation (in Chapter 2), reduced-rank regression (in Chapter 3), ridge regres-
sion (in Chapter 4), Stein estimation (in Chapter 5), asymptotic expansions of and
asymptotic approximations to single-equation simultaneous-equations estimators,
and recursive models (both in Chapter 8), are covered in detail.

The book also covers special topics such as computation of percentage points of
the noncentral F distribution (Appendix to Chapter 4) and the beta approximation
to the Durbin—Watson statistic (Section 7.3 of Chapter 7).

Chapter 9 contains solutions to all the exercises. While this may cause problems
for some instructors, it is designed to be of help to those who choose to use the
book for self-instruction.

I have tried to maintain a uniform notation throughout. Unfortunately, the
traditional Cowles-Commission notation for simultaneous-equations models is
inconsistent with the standard notation for linear regression models, and this
has necessitated departing somewhat from the traditional simultaneous-equations
notation that is still in use today.

The book was originally typeset with .AA4S-TEX. Thanks are due to Bar-
bara Beeton of the American Mathematical Society and Michael Spivak (author
of ApS-TEX) for their advice. Thanks are also due to my former assistant
Hwikwon Ham.

Early drafts of the book were gone over carefully by my then research assis-
tant Daniel Rodriguez Delgado. At the final stages I have been particularly
helped in the typesetting of Chapter 7 by Augustine Mok and Chin-Tung Grace
Chan, as well as by the assistance of the former in preparing the Table of
Contents and proofreading the entire book, and of the latter in gaining permis-
sion for the reproduction of passages from two previous publications, namely
the references Chipman 1997 and 1999 listed in the Bibliography. The Index
was prepared by Augustine Mok and Chin-Tung Grace Chan, using the I&TEX
document-preparation system (authored by Leslie Lamport).

John S. Chipman
Department of Economics
University of Minnesota
Minneapolis, MN 55455
USA
January 2011
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1 Multivariate analysis and the
linear regression model

1.1 Introduction
This book is mainly concerned with the linear model

k
Y=XB+E, ie, yj=) xufij+te; (t=12,....n), (1.1.1)
i=1

where X = [xy;] is an » x k matrix of n observations on k independent or exo-
genous variables, Y = [y;;] is an n x m matrix of n observations on m jointly
dependent or endogenous variables, and E = [&;] is an n x m matrix of ran-
dom errors with zero means and specified variances and covariances, where
t=1,2,...,n. Toallow for a constant term, the first column of X may be specified
to be a column of 1s. We shall in fact for the most part in Chapters 2—7 concentrate
on the special univariate case m = 1, returning to the multivariate case in Chapter 8.
The purpose of this chapter is to embed the above model in a multivariate model
in which the rows x;. = (x;1, X2, . .., xsx) of X and y;. = (3r1, Y12, ..+, Yim) Of ¥
are specified to have a joint distribution, and to consider the problem of the best
predictor of y,. given x,.. The linearity of the above model emerges as a practical
aspect of optimal prediction.

We shall start with an analysis of the multivariate statistical model of two jointly
distributed random row vectors (of which (1.1.1) is a sample of size n)

x=(x1,x2,...,5) and y=(y1,¥2,...,¥m) (1.1.2)

with first and second moments

M M
=E{x}, n=E{y}, M=E{(x,y)(x,y}=[** Y|, 113
3 x} n {»} {Ce, ) (x, ¥)} (Myx Myy) (1.1.3)

It is desired to predict y given knowledge of x.

We shall think of the model (1.1.1) as consisting of n observations on the
best linear predictor of y given x, or equivalently (as we shall see) as the best
linear approximation of the conditional expectation of y given x. Thus, estima-
tion consists of a two-stage process: (1) that of finding, out of the class of linear
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functions y = xB, the formula for the best linear predictor of y given x, namely
y = xB; (2) that of estimating the k X m matrix B from data. The optimal for-
mula we obtain for B simply gives us an interpretation of the model; for it may
be assumed that the means and moment matrix given by (1.1.3) are themselves
unknown parameters. The estimation problem consists in the problem of finding
a numerical estimate B of B from data on the xs and ys. In order to define pre-
cisely what is meant by a “best linear predictor” we will need the following two
definitions.

DEFINITION L.1.1 Let A be any real n x n matrix, and let x denote any 1 x n
row vector with real components. Then

A =0 (“A is nonnegative-definite”) means: x Ax’ = 0 for all x;

A ~0 (“A is zero-definite”) means: x Ax’ =0 for all x;

A > 0 (“A is positive-semidefinite”) means: x Ax’ 2 0 for all x and xAx’' >0
for some x;i.e., A >0 and not A = 0;

A >>0(“A is positive-definite”) means: x Ax" > 0 for all x #£0.

We further define
Ax=B ifandonlyif A-— B3>0, (1.1.49

or B < A, and similarly for the other listed relations. The relation > is known as
the Lowner ordering.!

THEOREM L1.1.1 The Lowner ordering (1.1.4) is a partial ordering of symmetric
matrices, i.e., it is transitive, reflexive, and anti-symmetric.

Proof: Transitivity of = means that A = B and B = C imply A = C. This follows
from the identity

2(A-C)' =z2(A—B) +z(B-C)7,

since if both terms on the right are nonnegative, so is the term on the left. Reflex-
ity of = means that A = B implies A »= B; this follows immediately from
the definition. Anti-symmetry of > means that A > B and B = A imply A=B
(cf. Birkhoff 1948, p. 1); i.e., setting C = A — B, C &~ 0 implies C =0. This is true
if and only if C is symmetric, and is proved as follows.

Let C ~0. (i) Choose 7 to be the coordinate vector with 1 in ith place and zeros
elsewhere; then zCz' =0 implies ¢;; =0 for all i, i.e., all the diagonal elements of
C are zero. (ii) Choose z so that its ith and jth components (i  j) are equal to 1
and the remaining components zero; then c;; + ¢ jj +cij +¢ji = 0. From (i) this
implies ¢;j = —cj; for i # j. Thus from (i) and (ii) we have C = —C’, i.e., C is
skew-symmetric (cf. Wedderburn 1934, p. 8). But a skew-symmetric matrix van-
ishes if and only if it is symmetric, i.e., C = ~C’' = —-C implies 2C = 0 hence
C =0, and the converse is trivial. 0



Multivariate analysis and the linear regression model 3

The result is illustrated by the counterexample

0 -1
2C7 =[z1 2] [1 O] [2;] =171 — 2122 =0.

In what follows we shall only be concerned with the Lowner ordering among
symmetric matrices.

It follows from Theorem 1.1.1 that if A is a collection of square symmetric
matrices, and a matrix B € A is a minimum (i.e., A = B for all A € A), then this
minimum is unique. For should there be two such matrices Bi, B;, then A = B;
for all A € A, hence in particular it is true that B, »= By ; likewise, B; > By, hence
from the anti-symmetry of >, By = B;.

Coming back to our problem of optimal prediction, a widely accepted criterion
for goodness of prediction is that of mean-square error: Out of a set of mappings
F:R¥ - R™ one chooses the mapping F which minimizes the matrix mean-
square error

R(F)=E{ly- F®I'ly—F®)I} (1.1.5)

in terms of the ordering %-. .
Two important properties of F should be noted, and will be proved below:

(1) If the set of admissible mappings F is subject to some mild regularity condi-
tions, then the optimal F is precisely the conditional expectation of y given x,
F(x)=E(y|x). (Theorem 1.6.1.)

(2) If the joint distribution of x and y is normal, then the optimal F, which is
E(y | x) as above, is an affine function I:‘(x) =a + xB. (Theorem 1.4.1.)

As a result of these two properties, Doob (1953, p. 77) introduced the concept of
“wide-sense conditional expectation of y given x”, defined as that affine mapping
F(x) =« + xB which minimizes the mean-square error (1.1.5) among all such
affine mappings, and denoted F(x)= E(y|x). The same concept was introduced
by Cramér (1946, p. 272), and called the “minimum-mean-square regression of y
onx.”

It is convenient to introduce a similar concept in which the set of affine
mappings F(x) =a + xB is replaced by the set of linear(-homogeneous) ones
F(x) = xB. The resulting optimal F may be called the best homogeneous linear
predictor of y given x, denoted P(y | x).

In order to relate the above concepts to the standard linear regression model
used in econometrics, it will be useful first to derive the expression for the best
homogeneous linear predictor of y given x.

THEOREM 1.1.2 If the random variables x and y of (1.1.2) have a joint distri-
bution satisfying (1.1.3), then among all linear mappings F(x) = xB, the one that
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minimizes the matrix mean-square error, or “risk”

R(B)=E{(y —xB)'(y —xB)}, (1.1.6)
is given by
P(y|x)=xB, (1.1.7)

where B is any solution of the equation
M, B =M,y (1.1.8)

(which always exists). The value (1.1.7) is unique with probability 1, and the
minimum risk is

R(®B)=M,, —M,,B. (1.1.9)

In order to prove this theorem it will be necessary first to introduce some
definitions and then to prove two lemmas.

DEFINITION 1.1.2 For any n x k matrix X, a (weak) generalized inverse of X,
denoted X, is defined as any k X » matrix satisfying XX~ X =X.

The matrix X~ is called a g-inverse by Rao, C. R. (1966).2 It will be shown
in the next chapter (Theorem 2.3.1) that any matrix possesses a weak generalized
inverse.

For the following standard concepts and results see, e.g., Thrall and Tornheim
(1957, pp. 73~78) and Afriat (1957, p. 801).

DEFINITION 1.1.3 The row space of an n x k matrix X is the set of 1 x k row
vectors

R(X)={£ ef*: £ =y’ X for some n x 1 column vector y € R"},

where R” denotes m-dimensional Euclidean space. The column space of X is
defined as the set of n x 1 column vectors

C(X)={pneR": u=XB for some k x 1 column vector 8 € R¥}.
The column null space (or column kernel) of X is the set of k x 1 vectors
K(X)={Be%: xp=0}.

The dimensions of C(X) and K(X) are respectively the rank, p(X), and column
nullity, v(X), of X, where p +v==k.
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LEMMA 1.1.1 Let A, B’ be m x n matrices. Then tr (AB) =tr (BA).
Progf: Putting A = [a;;], B =[b;;], we have

m n n m
w(AB)=) > aibji=Y Y bjia;=tr(BA). O

i=1 j=1 j=l1i=1

LEMMA 1.1.2 Let z be a row vector with moment matrix E{z'z} = M. Then z
belongs to the row space of M with probability 1.

Proof:3 Let M~ be any symmetric weak generalized inverse of M. Then we
may write

z=zM M +z(I-M™M). (1.1.10)
Defining
e=z(I —M™ M), (1.1.11)

we see from (1.1.11) and Definition 1.1.2 that the moment matrix of e is
E{de}=E{(I—MM™)z(I-M M)y=U—-MM )M — M~ M)=0.

From Lemma 1.1.1 and the above equation, E{ee’} = tr(E{e’e}) = 0. Now a theo-
rem of Billingsley (1995, p. 203, Theorem 15.2(ii)) implies that if the integral of
a positive-valued function is zero, then the set on which this function is positive
has measure zero. Applying this to the positive-valued random variable ee’ we
conclude that*

E{ee'}=0=Priee’ =0} =1.

Since ee’ is a sum of squares, this implies in turn that Pr{e = 0} = 1. Going back
now to (1.1.10) we see that since the second term on the right (which is (1.1.11))
is zero with probability 1, therefore

Priz=zM"M=wM}=1 (where w=zM").

This states that z belongs to the row space of M with probability 1. O



