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31, COMPARATIVE RATE OF
FUNCTIONS ' AND INDEPEND-
ENT VARIABLES

It is the primary object of the Differential Calculus
to obtain a measure of the rate of increase of the func-
tion as compared with that of the independent variable.®
For this purpose, we let Ax denote an increment in the
value of x, so that x ‘and ‘x+Ax are two values of the
independent vanable ﬂet Ay denote the movement in y
consequent upon the increase of x to x-+Ax. Then y+Ay
is the new value of the function;’ tht is to say, it is
the same function for x+Ax that y is of x.® We shall
first consider the ratio of the two increments Ay and' Ax.

To begin with the simplest function, let

y=mx+Db, n
where m and b are constants. The graph of this function
is a straight line, and the function is hence called the
linear function. If x be increased by Ax, the new value
of y will be

V+Ay=m(x+Ax)+b | )
Subtractmg equaation (1), we find"
whence

Thus the ratio between the corresponding increments of ‘y
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and x is, in this case, constanf.

There are two things implied in this statement: first,
that no matter how large x is taken, the ratio is un-
changed, secondly, no matter whereon the line we take
the point P, the ratio remains the same.

In this case, the ratio Ay: Ax is the measure of rela-

§ . . 1 -
tive rates of increase of y and x. Thus, if m=-, y in-

creases half as fast as x; if m=2, it increases twice as
fast as x,; if m= —1, it decreases with the rate with which
xincreases. If ® denotes the angle the line makes with
the axis of x, m=tan ®. In the graph, tan ® is taken as
the gradient or measure of the slope of the line, this slopz
being constant in the case of the straight line.

Let us next apply a similar 'process to the function
y=x2. When x is increased to x +Ax, the function
becomes

V+Ay=(x+Ax)?=x2+42xAx 4 (Ax)*; ¢))

whence Ay=2xAx+(Ax)?, 2)
Ay

and L 2xtax. 3

The ratio of the two increments is no longer con-
stant. This is obviously due to the fact that® the graph
isnot a straight line, and that in consequence the relation
rate of increase of y is not constant; in other words, if
x increases uniformly, y- will not increase uniformly. We
should therefore expect the measure of y’s rate to contain
x. Now the ratio equation in (3) is the slope of the straight
line passing through P and P’, which, with reference
to‘-tilc curve, we call a secant line. The slope of this se-
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cant is not an exact measure of the relative rate of in-
crease in y at the point P, because it depends also upon the
point P’. The ratio of increments Ay: Ax in fact depends
not only upon the ‘rate of y at P, but upon all the va-
rious values of the rate while the moving point goes from
P to P'. It may be taken as the measure of the average
‘rate for the whole interval of this motion, but it is not
the measure of the rate (at the instant) when the point
is at P.

This obviously applies whenever the graph is a curve.
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32, DERIVATIVES

The Measure of the Relative Rate

To find the proper measure of the relative rate of
y at the point P, we observe that, if P’ were taken nearer
to P, the slope of PP’ would mezasure the average rate of
y for a smaller interval, and thus come nearer to being®
the measure of the rate at P. Moreover, if P’ approaches
P indefinitely and finally-coincides with it, the secant line
becomes a tangent line, and its slope then depends upon
no value of the rate except that at P. The slope of the
tangent line is therefore the proper measure of the rate
at P, defining the expression slope of the curve at a point
to mean slope of the tangent line at the point, this is
expressed as follows: the measure of the relative rate of
y compared with x is the slope of the graph of the func-
tion at the point representing the values of y and x in
question. :

The tangent is often called the limiting position of
the secant line, but it is an actual position of the line; it
is only limiting because the line ceases for a moment to
be properly called a secant (since a secant is defined as
line passing through two points of the curve). It is some-
times called a secant passing through two consecutive
points of the curve, or through two coincident points of
the curve, the latter phrase implying, of course, that the
two points have come into coincidence by motion along
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the curve.

The Derivative

The analytical meaning of the statement above is that,
when y and x diminish together, their ratio tends to a
limiting value which is perfectly deﬁnite quantity; this value
is reached just as the terms of the ratio vanish, and it is
the measure of the relative rate of y and x. It is called
limiting ratio because the ratio them ceases to be a frac-
tion whose value could be obtained by finding how many
times the numerator contams the denominator. For reasons
which will be explamed further on, the value of this limit

.

is denoted by -gl Thus, deﬁninng- as the measure of

' the relative rate of y, we may write:

Limit, when A x—0, of Ay ji
This is also frequently expressed by the equation
A d
ALl s,

where it is understood that & is a quantity which vanished
with Ax.

The value of Z—i depending, as it does,® upon x

(when y is any function of-x except the linear), is a new
function of x, which is called the derivative of the given
function. Thus, from equation (3) we derive, by making
A x—0,

dy
v i

hence 2x is the derivative of the function x2.



It follows that a positive value of the derivat_iv_e_ivn-
dicates an increasing function, and a negative value, a de-

creasing function.
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33.. NEWTON’S INTEGRALS AND
RIEMANN'S INTEGRALS

Areas, and the Differential and
Integral Calculus

In the simplest case the process of integration is the
adding together of areas of non-overlapping elementary
figures, and then the taking® of some kind of a limit.
The Greeks computed many simple areas, the methods
being 'systematized through the years, and culminating in
the method of exhaustions of Eudoxus (c. 408-355 B.C.)
and Archimedes (c. 287-212 B.C.). This method was the
first crude limit process, and they used the geometry of
the figures to fit a sequence. of non-overlapping triangles
inside each main figure that finally exhausts the area. By
this means they found the areas of the circle and sections
of parabolas, for example, but could not define a general
non-negative polynomxal and so could not compute the
area under its ‘curve.

The second approach to mtegranon lies in inverting
the result of differentiating a known function. The opera-
tion of differentiation was first systematized by I. Newton
(1642—1727) and G.W. Leibnitz (1646—1716). To each
of a certain class of functions f for which the derivative
Df df /dx exists, say, for x in a<x<b, we make cor-
tespond that derivative,® so that we can regard D as an
operator. It obeys the following rules. If f,g are differen-
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tiable functions of x in a<<x<b, and if a,B are constants,
then In a<<x<b we have:

D(af +Bg)=aDf +BDg (1.1)
D(fg)=(Df)g+ f(Dg) (1.2)
D{f(g(x))}=(df/dg)Dg (1.3)
Doa=o0 (1.4)

The rule for division is obtained from (1.2); if f=h/g
then, :
Dh=(Df)g+ f(Dg)
D(h/g)=Df ={Dh—(h/g)Dg}/g
A function H of points x is an indefinite Newton
integral of a known finite function f in a<x<b, if
DH= f in that interval. The functions that Newton inte-
grated are all continuous, but we can ignore that limita-
tion. Then the definite Newton integral in a<x<b is
H(b)—H(a). We can write H as:

H=D-1f=(NL) S fdx, H(b)— H(a)=(NL) Si’ Fadx

where NL stands for Newton-Leibnitz. This definition of
the integral is descriptive. No method of construction is
offered, but we are given its properties so that we can
recognize it if it is produced in another way. Because of
this we have to prove that if H and H, are both inde-
finite Newton integrals of the same function f in a<x<b,
then: '

H(b)— H(a)=H\(b)— H.(a) (1.5)
To prove (1.5) we note that by (1.1)

DH—-H)=f—f=0

so that in particular H— H, is continuous, and then the
mean value theorem gives (1.5).
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From (1.1) we obtain the distributivity of the Newton
" integral, namely,
D~Y(af+Bg)=aD~f+BD"'g (1.6)
From (1.2; 1.6) we have the formula for integration by
parts,
D~ (gDf)+D-Y(fDg)=fg

(NL)I(f g)dx fa—(NL) I(gdf ) K (L.7)

From (1.3) we have

df d.
Fan= (VD[ GG a

and replacing df/dg by f., .
@D rieMe=ND) [rieds 1.8)

the formula for integration by substitution.

When we have defined more general integrals we will
see that the formulae (1.5; 1.6; 1.7; 1.8) are in some
sense still true for them. '

The integration of a polynomial in x is now easy, but
some simple functions cannot be mtegrated It can be
proved that if DH exists in a<x<b and if ¥ is a num-
ber between H’'(a) and H’(b),‘ then there isa & i in a<{<b
such that H'(§)=. It follows that if f is zero for x less
than 4 (a+b), and is 1 otherwnse, then f does not have
a Newton integral in a<x<b.

Riemann, Riemann—Stieltjes and
Burkill Integration

G.F.B.Riemann (1826—66) gave the following defini-
tion of the definite integral of a function f in e<<x<b.
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Let

A= Xo<Xy< oo <X, =b 1 2.1
be a division of e<<x<b into smaller intervals, let £; be
a point of the interval x;_;<x<Xx;, and consider the sum

S=2 1) (x=%5-1) 2.2)

=1

The number 7 is the definite Riemann integral of f in

a<x<b, if to each ¢>0 there is a >0 such that
| §—I|<e 2.3)

whenever ;

Xj <€, <x;<x;_, 40 (j=1,2,:+,n) (2.9)
J.G. Darboux (1842—1917) made the following modi-
fication when f is real. He replaced f (£;) by the supre-
wum (least upper bound) of f in x;_,<x<x;, and ob-
¢ained an upper sum. For a lower sum he replaced f (£;)
by the infimum (greatest lower bound) of f in x; _,<x<x;.
If f is non-negative, with a given graph, and if we take
a division (2.1) of a<<x<b, then the upper Darboux sum
is the sum of the areas of rectangles with bases the in-
tervals x;_,<x<x;, and with just sufficient height to
include the graph. The lower Darboux sum is the sum of
the areas of rectangles with the same bases, but lying just
below the graph. When f is real it is clear that for
suitable choice of the &;, the S of (2.2) can be taken
arbitrarily near to the upper sum, and for another choice,
arbitrarily near to the lower sum, so that the Darboux
modification does not alter the Riemann integral of a real
function. Thus if a real function has a Riemann integral
in a<x<b it must be bounded there. From this we can
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show that not every:Newton integral is” a Riemann inte-
gral. For = ; s :
H(x)=x2-sin(1/x2)(x+£0), H(0)=0 2.5)
is differentiable everywhere, the derivative being unbounded
in the neighbourhood of x=0. However, not every Rie-
mann integral is a Newton integral, for the Riemann in-
tegral of the last function of section 2 exists in a<x<b,
and is equal to %(b-—a).' There is a common region, for
the Riemann and Newton integrals of a continuous func-
tion exist and are equal. The Riemann integral cannot
integrate every bounded function, for if
! 1(x rational)

H)=g- o
0(x irrational)

then any upper Darboux_ sum is b—a, while any lower Dar-

boux sum is 0. Thus f does not have a Riemann integral

(nor a Newton integral).®

(2.6)
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