BRIFTE XML (FENRR)

An Authoritative Review of Network Programmability Technologies

Software Defined Networks

[%] Thomas D. Nadeau & Ken Gray &

O’REILLY" Z AR itk
Z POSTS & TELECOM PRESS

A\

BRI TE XL o

SDN: Software Defined Networks

[22] Thomas D. Nadeau & Ken Gray &

R T SN : | oy ".':a:«
BN L

w4

S

O’REILLY*

Beijing ' ICAndBridae ¢ Earithaml * K&In ¢ Sebastopol * Tokyo

OREMy Medil, Ink. 32 AXA K 4R &, 1 BR AL & Bk

VAN = i O W

b H

BBERSE (C1P) Wik

RAEEXME : KX/ (R) 4% (Nadeau, T.D.)
, (38) BE (Cray,K.) #F. — BEHAX. — Jtx : A
FCHRHE AR AL, 2014.1

ISBN 978-7-115-33574-6

I. Q%% 1I. OG- Q=+ III. OF-FEHLHL —
W —%3x IV. @OTP393

oh [A B B IECIPEHE #% 7 (2013) 552633015

Rl B 7 B

© 2013 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Posts & Telecommunications Press,
2014. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights to publish
and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

KX R REH O’Reilly Media, Inc. 1k 2013,

RCHENRRER A RS L tHREAE AR 2014, LERENRR A RRFNEH 458 AR BRI SH B AL B £—O’Reilly
Media, Inc.BiFA]

IEERE, REVEFT, ZENEFTHINLBRELUEAEES.

* E [3:]Thomas D.Nadeau Ken Gray
TG s
TS BE4 £54

& AN RMEE HRRA: AR R AT ERHFEE X EEFEFHR 11 5

IE4% 100164 HL-FHEM: 315@ptpress.com.cn
Ak http://www.ptpress.com.cn

=] T 35 BN 45 A R~ R D

® JFA: 787x1000 1/16

Elsk: 24

F¥. 447 TF 200441 AE 1K

Ep¥: 1-2500 2014 4E 1 H LSS 1 REDA
ZHENAERECS EF: 01-2013-8314 5

EM: 69.00 7T
EERSHLZ: (010)81055410 EPEREML: (010)81055316
REE#LZ: (010)81055315
[TEZEFAIE: REIBFE 0021 S

Foreword by David Meyer

Although the ideas underlying software-defined networking (SDN) have only recently
come into the public consciousness, a few of us who are active in the research, operator,
and vendor communities immediately saw the applicability of SDN-like techniques to
data center and service provider environments (and beyond). In addition to the explo-
sion of innovative thinking going on in the research community, we also saw SDN as a
programmatic way to optimize, monetize, and scale networks of all kinds.

In 2011, the first organization dedicated to the growth and success of SDN began with
the Open Networking Foundation (ONF). Among its stated missions was to evolve the
OpenFlow protocol from its academic roots to a commercially viable substrate for
building networks and networking products. Within two years, the ONF’s membership
had grown to approximately 100 entities, representing the diverse interest and expect-
ations for SDN. Against this backdrop, many of us were looking at the wider implications
of the ideas underlying SDN, and in the process, generalized SDN to include not only
OpenFlow but other forms of network programmability as well.

Early on in this process, both Tom Nadeau and Ken Gray realized that SDN was really
about general network programmability and the associated interfaces, protocols, data
models, and APIs. Using this insight, they helped to organize the SDN Birds of a Feather
session at IETF 82, in Taipei, to investigate this more general SDN model. At that meet-
ing, Tom presented a framework for software-defined networks that envisioned SDN
as a generalized mechanism for network programmability. This work encouraged the
community to take a more general view of SDN and eventually led to the formation of
the Interface to the Routing System Working Group in the IETE

Since that time, in addition to their many contributions to Internet technologies, Tom
and Ken have become well-respected senior members of the SDN community. They are
active participants in the core SDN industry activities and develop products for the SDN
market. Some of the key industry activities that Tom and Ken drive include the ONE,
IETE ETSI, industry events such as SDN Summit 2012/2013, as well as open source
consortia such as the Open Daylight Project. This book draws on their deep

understanding and experience in the field and offers a unique perspective on SDN. It
will help you understand not only the technology but also how it is being developed,
standardized, and deployed.

Tom and Ken are eminently qualified to give you a lucid understanding of the technol-
ogy and the common-sense use and deployment of network programmability techni-
ques. In particular, their book is an excellent and practical introduction to the
fundamentals of SDN and is filled with innumerable anecdotes explaining the ideas and
the background behind the development of SDN. So if you are interested in writing
SDN applications, building SDN capable networks, or just understanding what SDN is,
this book is for you!

—David Meyer
CTO and Chief Scientist, Brocade Communications

x | Foreword by David Meyer

Foreword by David Ward

Technological shifts that affect how developers and engineers build and design their
business architectures are monumental. These shifts are not applicable to Moore’s law
and tend to be transformations that affect not only the IT landscape but the business
landscape as well. These shifts tend to occur every 8 to 10 years and have a long-lasting
impact on how people build, consume, and distribute technologies. They also force
people to frame their business opportunities in new ways.

In 1996, Gartner coined the term “service-oriented architecture.” By 2000, it had taken
center stage with the core purpose of allowing for the easy cooperation of alarge number
of computers connected over a network to exchange information via services without
human interaction. There was no need to make underlying changes to the program or
application itself. Essentially, it took on the same role as a single operating system on
one machine and applied it to the entire infrastructure of servers, allowing for more
usable, flexible, and scalable applications and services to be built, tested, deployed, and
managed. It introduced web services as the de facto way to make functional building
blocks accessible over standard Internet protocols independent of platforms and lan-
guages—allowing for faster and easier development, testing, deployment, and manage-
ability of IT infrastructures. SOA drastically changed the way developers, their man-
agers, and the business looked at technology.

When you look at software-defined networking, you see similarities. The network is the
cornerstone of IT in that it can enable new architectures that in turn create new business
opportunities. In essence, it allows IT to become more relevant than ever and the enabler
of new business. The network is now the largest business enabler if architected and
utilized in the correct way—allowing for the network, server, and storage to be tied
together to enable the principles of SOA to be executed at the network layer. SDN and
APIs to the network change the accessibility to programming intent and receiving state
from the network and services, thus overcoming the traditional view that the network
has to be built and run by magicians. However, when SOA principles become applied
to the networking layer, the network becomes more accessible, programmable, and

flexible, allowing organizations to actually shift I'T at the speed that the business moves,
all while adding increased value to the business in new ways.

But what is a software-defined network? There are many camps that have varying def-
initions. When broken down into simple terms, it needs to be looked at as an approach
or architecture to not only simplify your network but also to make it more reactive to
the requirements of workloads and services placed in the network. IT infrastructure
needs to move at the speed of business opportunities and must enable new ways to do
business quickly, flexibly, and faster than before. A pragmatic definition is this: SDN
functionally enables the network to be accessed by operators programmatically, allow-
ing for automated management and orchestration techniques; application of configu-
ration policy across multiple routers, switches, and servers; and the decoupling of the
application that performs these operations from the network device’s operating system.

As SDN becomes increasingly the buzzword of multiple industries, it's worthwhile to
take a look at why SDN came about. Historically, network configuration state has re-
mained largely static, unchanged, and commonly untouchable. Manual configuration
and CLI-based configuration on a device-by-device basis was the norm, and network
management constituted the basic “screen scraping” or use of Expect scripts as a way
to solve manageability problems and core scalability issues (cut-and-paste methodol-
ogy). The highest end of programmatic interfaces included XML interfaces and on-
board Perl, Tk/Tcl, and Expect. However, when you're dealing with multiple routers,
switches, and servers working as a system (and services that are routing traffic across
multiple domains with different users, permissions, and policies), control and man-
agement state needs to be applied across the network as an operation. Element-by-
element management simply doesn’t provide enough flexibility and agility or the notion
of dynamic or ephemeral data (configuration and state not persistently held in the config
file). But as service-oriented architecture principles started to shift southbound down
the stack and the realization of their application at the networking layer was recognized,
new architectures—coupled with advancements in networking—allowed for software-
defined networking to emerge and users to realize the power that the network was
capable of in new ways.

Yes, it’s true that there is a history of protocol interfaces to routers, switches, servers,
gateways, and so on. Decades of deployment of the current Internet that program dy-
namic data associated with subscribers, sessions, and applications does currently exist
and is widely deployed. These protocol servers (e.g., Radius, Diameter, PCMM, COPS,
3GPP) all could be considered early forms of SDN, so why aren’t they? What’s a bit
different now is that one major functionality of the SDN architecture is the ability to
write applications on top of a platform that customizes data from different sources or
data bases into one network-wide operation.

SDN is also an architecture that allows for a centrally managed and distributed control,
management, and data plane, where policy that dictates the forwarding rules is

xii | Foreword by David Ward

centralized, while the actual forwarding rule processing is distributed among multiple
devices. In this model, application policy calculation (e.g., QoS, access control lists, and
tunnel creation) happens locally in real time and the quality, security, and monitoring
of policies are managed centrally and then pushed to the switching/routing nodes. This
allows for more flexibility, control, and scalability of the network itself, and the use of
templates, variables, multiple databases of users, and policies all working in combination
to derive or compile the desired configuration and state to be downloaded to the routers
and switches. What’s key to understand is that SDN doesn't replace the control plane
on the router or switch. It augments them. How? By having a view of the entire network
all at once versus only from one position in the topology (e.g., the router or switch).
The marriage of dynamic routing and signaling and a centralized view is incredibly
powerful. It enables the fastest possible protection in the event of a failure, the greatest
resiliency, and the ability to place services into a network in one command. The two
technologies working together are really a major step forward that wasn’t previously in
our toolbox.

There are a few variations on the SDN theme and some oft spoken components to be
considered. OpenFlow is one, which architecturally separates the control and manage-
ment planes from the data plane on the networking device. This allows for a centralized
controller to manage the flows in the forwarding nodes. However, OpenFlow is only
one protocol and one element of SDN. There are many other protocols now. Some
examples include I2RS, PCE-P, BGP-LS, FORCES, OMI, and NetConf/Yang. All of these
are also open standards. What's important to remember is that SDN is not a protocol;
it's an operational and programming architecture.

What do we get from SDN? The architecture brings the network and networking data
closer to the application layer and the applications closer to the networking layer. As
practiced in SOA, no longer is there the need for a human element or scripting languages
to act as humans to distribute data and information bidirectionally because APIs and
tooling now have evolved in a way that this can be delivered in a secure and scalable
way via open interfaces and interoperability. The data in the network (e.g., stats, state,
subscriber info, service state, security, peering, etc.) can be analyzed and used by an
application to create policy intent and program the network into a new configuration.
It can be programmed this way persistently or only ephemerally.

Programmability (i.e., the ability to access the network via APIs and open interfaces) is
central to SDN. The notion of removing the control and management planes to an off-
switch/router application connected to the networking device by SDN protocols is
equally important. This off-box application is really what software developers would
call a “platform,’ as it has its own set of APISs, logic, and the ability for an application to
make requests to the network, receive events, and speak the SDN protocols. What's key
here is that programmers don’t need to know the SDN protocols because they write to
the controller’s APIs. Programmers don’t need to know the different configuration syn-
tax or semantics of different networking devices because they program to a set of APIs

Foreword by David Ward | xiii

on the controller that can speak to many different devices. Different vendors, eras of
equipment, and classes of equipment (e.g., transport, simple switches, wireless base
stations, subscriber termination gateways, peering routers, core routers, and servers)
all are on the trajectory to be able to be programmed by the SDN protocols that plug
into the bottom of the controller. The programmer only uses the APIs on the top of the
controller to automate, orchestrate, and operate the network. This doesn’t necessarily
mean there is a grand unification theory of controllers and one to serve all layers and
functions of networking, but what it does mean is that the network now has been ab-
stracted and is being programmed off box. Thus, when integrated into an IaaS (Infra-
structure as a Service) layer in a stack, OSS, or IT system, the network is being automated
and orchestrated as fast as users log onto the net and as fast as workloads are being spun
up On Sservers.

The use of new tooling practices typically utilized by system administrators and new
available to network operators are related to the whole SDN movement. Tools such as
Puppet, Chef, CFEngine, and others are being used to automate and orchestrate the
network in new ways as plug-ins can now be created to utilize the network data via the
open interfaces of the network. Controller APIs also allow for easier and faster ways to
build and apply policy across the network in multiple languages and with integration
into existing tools such as IDEs (NetBeans, Eclipse, et al.). This allows for a better user
experience for network engineers versus the traditionally used CLI model.

Before we dig into examples, it's important to understand what SDN actually solves and
why there is a shift to this particular architecture. As networks evolve and new services
are deployed, it’s critical to implement new ways for users to more easily provision and
orchestrate network resources in real time. By implementing this, cost can be reduced
by the automation of moving resources around faster and more reliably, and by allowing
the network to respond directly to a request from an application (versus the intervention
by a human). This allows for operators to use programmatic (scalable) control versus
manual to create and apply these services in a way that is simpler than a command-line
interface. Additionally, it enables the ability to utilize new resources from the network
(user data, traffic path information, etc.) and create new types of applications that can
control policy for the network in a scalable fashion. It also allows for the optimization
of infrastructure, services, and applications by allowing for new network data and ca-
pabilities to be extended and applied into the aforementioned architecture, creating new
ways to not only optimize existing applications but also to insert new services or offer-
ings that can provide a better user experience or create a new offering or advanced
feature that could be monetized.

As SDN evolves, it's important to look at some implementations to understand why it’s
so critical for multiple industries (e.g., video delivery, user services and mobile, cable
and broadband, security, and provider edge) to embrace. Where SDN reaches its po-
tential, however, is when you look at it for not just programming the network functions
and scaling those across your infrastructure, but also for actually tying server, storage,

xiv | Foreword by David Ward

and the network together for new use cases. In this case, systems can actually interact
with each other, allowing for more infrastructure flexibility, whether physical, virtual,
or hybrid.

Traffic policy and rerouting based on network conditions and/or regulation shifts are
also common applications, as are the insertion of new services or data into applications
that may be able to more clearly prioritize bandwidth for a user that pays a premium
amount for faster connection speeds. When you apply SDN and a centralized manage-
ment plane that is separate from the data plane, you can more quickly make decisions
on where data traffic can be rerouted, as this can occur programmatically with software
interfaces (APIs), versus on-the-box CLI methodology.

One advanced use case is the hybrid cloud. In this case, an application may run in a
private cloud or data center yet utilize the public cloud when the demand for computing
capacity spikes or cost can be reduced. Historically, cloud bursting was typically used
only in environments with non-mission critical applications or services, but with the
network tie-in and software principles applied, the use case shifts. Applications now
remain in compliance with the IT organizations’ policies and regulations. The applica-
tion can also retain its dependency model if it is reliant on different data or information
that it typically has on premises versus off, or in the public cloud environment. It also
allows for the application to run across different platforms regardless of where the ap-
plication was built.

As we look at SDN, we must also consider Network Functions Virtualization and how
this ties into the broader infrastructure and virtualization picture. The transition from
physical to virtual is one that is leading many of these changes in the industry. By tying
the hardware (physical) to software (virtual), including network, server, and storage,
there’s the opportunity to virtualize network services and have them orchestrated as fast
as any other workload. Tie this via programmatic interfaces to the WAN, and you can
absolutely guarantee service delivery. SDN coupled with NFV is a pivotal architectural
shift in both computing and networking. This shift is marked by dynamic changes to
infrastructure to closely match customer demand, analytics to assist in predicting per-
formance requirements, and a set of management and orchestration tools that allow
network functions and applications to scale up, down, and out with greater speed and
less manual intervention. This change affects how we build cloud platforms for appli-
cations and at the most basic level must provide the tools and techniques that allow the
network to respond to changing workload requirements as quickly as the platforms that
leverage them. It also allows workload requirements to include network requirements
and have them satisfied.

It's important to note that not all networks are the same, and that’s why it’s critical to
understand the importance of the underlying infrastructure when abstracting control
from the network—either from physical or virtual devices. Network Functions Virtu-
alization is simply the addition of virtual or off-premises devices to augment traditional

Foreword by David Ward | xv

infrastructure. However, the tie to both the on- and off-premises offerings must be
considered when running applications and services to ensure a seamless experience not
just for the organization running the applications or services but also for the consumer
of the services (whether they be enterprise and in-house users or external customers).

So why should you care? From a technical perspective, SDN allows for more flexibility
and agility as well as options for your infrastructure. By allowing data to be controlled
centrally and tied into not just the network, but also the storage and server, you get a
more cohesive view on performance, speed, traffic optimization, and service guarantees.
With programmatic interfaces (APIs) that can be exposed in multiple languages and
utilized with tools, your operators and administrators can more quickly respond to the
demand of the business side of the house or external customer needs. They can now
apply policies for other development organizations in-house to allow them network
data to more effectively spin up server farms or even build applications with network
intelligence built in for faster, better performing applications. By allowing for the data
to be exposed in a secure and scalable way, the entire IT organization benefits, and with
faster development and deployment cycles and easier delivery of new services, so too
does the business. The promise that SOA gave developers—write once, run anywhere
—can now be fully realized with the underlying network’ ability to distribute infor-
mation across the enterprise, access, WAN, and data center (both physical and virtual).
This allows for applications to break free from the boundaries of the OSS and manage-
ment platforms that had previously limited their ability to run in different environments.

The IT industry is going through a massive shift that will revolutionize the way users
build, test, deploy, and monetize their applications. With SDN, the network is now closer
to applications (and vice versa), allowing for a new breed of smarter, faster, and better
performing applications. It enables the network to be automated in new ways, providing
more flexibility and scalability for users, and unleashes the potential for business cost
savings and revenue-generating opportunities. It’s a new era in networking and the IT
industry overall, and it will be a game-changing one. Check out this book—it’s required
reading.

—David Ward
CTO, Cisco Systems

xvi | Foreword by David Ward

Preface

The first question most readers of an O’'Reilly book might ask is about the choice of the
cover animal. In this case, “why a duck?” Well, for the record, our first choice was a
unicorn decked out in glitter and a rainbow sash.

That response always gets a laugh (we are sure you just giggled a little), but it also brings
to the surface a common perception of software-defined networks among many expe-
rienced network professionals. Although we think there is some truth to this perception,
there is certainly more meat than myth to this unicorn.

So, starting over, the better answer to that first question is that the movement of a
duck! is not just what one sees on the water; most of the action is under the water, which

1. The real answer is that one of the authors has a fondness for ducks, as he raises Muscovy Ducks on his family
farm.

xvii

you can't easily see. Under the waterline, some very muscular feet are paddling away to
move that duck along. In many ways, this is analogous to the progress of software-
defined networks.

The surface view of SDN might lead the casual observer to conclude a few things. First,
defining what SDN is, or might be, is something many organizations are frantically
trying to do in order to resuscitate their business plans or revive their standards-
developing organizations (SDOs). Second, that SDN is all about the active rebranding
of existing products to be this mythical thing that they are not. Many have claimed that
products they built four or five years ago were the origins of SDN, and therefore ev-
erything they have done since is SDN, too.

Along these lines, the branding of seemingly everything anew as SDN and the expected
hyperbole of the startup community that SDN has been spawning for the past three or
four years have also contributed negatively toward this end.

If observers are predisposed by their respective network religions and politics to dismiss
SDN, it may seem like SDN is an idea adrift.

Now go ahead and arm yourself with a quick pointer to the Gartner hype-cycle.> We
understand that perspective and can see where that cycle predicts things are at.

Some of these same aspects of the present SDN movement made us lobby hard for the
glitter-horned unicorn just to make a point—that we see things differently.

For more than two years, our involvement in various customer meetings, forums, con-
sortia, and SDOs discussing the topic, as well as our work with many of the startups,
converts, and early adopters in the SDN space, leads us to believe that something worth
noting is going on under the waterline. This is where much of the real work is going on
to push the SDN effort forward toward a goal of what we think is optimal operational
efficiency and flexibility for networks and applications that utilize those networks.

There is real evidence that SDN has finally started a new dialogue about network pro-
grammability, control models, the modernization of application interfaces to the net-
work, and true openness around these things.

In that light, SDN is not constrained to a single network domain such as the data center
—although it is true that the tidal wave of manageable network endpoints hatched via
virtualization is a prime mover of SDN at present. SDN is also not constrained to a single
customer type (e.g., research/education), a single application (e.g., data center orches-
tration), or even a single protocol/architecture (e.g., OpenFlow). Nor is SDN constrain-
ed to a single architectural model (e.g., the canonical model of a centralized controller
and a group of droid switches). We hope you see that in this book.

2. http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

xvii | Preface

At the time of writing of the first edition of this book, both Thomas Nadeau and Ken
Gray work at Juniper Networks in the Platform Systems Division Chief Technologist’s
Office. We both also have extensive experience that spans roles both with other vendors,
such as Cisco Systems, and service providers, such as BT and Bell Atlantic (now Veri-
zon). We have tried our best to be inclusive of everyone that is relevant in the SDN space
without being encyclopedic on the topic still providing enough breadth of material to
cover the space. In some cases, we have relied on references or examples that came from
our experiences with our most recent employer (Juniper Networks) in the text, only
because they are either part of a larger survey or because alternative examples on the
topic are net yet freely available for us to divulge. We hope the reader finds any bias to
be accidental and not distracting or overwhelming. If this can be corrected or enhanced
in a subsequent revision, we will do so. We both agree that there are likely to be many
updates to this text going forward, given how young SDN still is and how rapidly it
continues to evolve.

Finally, we hope the reader finds the depth and breadth of information presented herein
to be interesting and informative, while at the same time evocative. We give our opinions
about topics, but only after presenting the material and its pros and cons in as unbiased
a manner as possible.

We do hope you find unicorns, fairy dust, and especially lots of paddling feet in this
book.

Assumptions

SDN is a new approach to the current world of networking, but it is still networking.
As you get into this book, we're assuming a certain level of networking knowledge. You
don't have to be an engineer, but knowing how networking principles work—and
frankly, don't work—will aid your comprehension of the text.

You should be familiar with the following terms/concepts:

OSI model

The Open Systems Interconnection (OSI) model defines seven different layers of
technology: physical, data link, network, transport, session, presentation, and ap-
plication. This model allows network engineers and network vendors to easily dis-
cuss and apply technology to a specific OSI level. This segmentation lets engineers
divide the overall problem of getting one application to talk to another into discrete
parts and more manageable sections. Each level has certain attributes that describe
it and each level interacts with its neighboring levels in a very well-defined manner.
Knowledge of the layers above layer 7 is not mandatory, but understanding that
interoperability is not always about electrons and photons will help.

Preface | xix

Switches
These devices operate at layer 2 of the OSI model and use logical local addressing
to move frames across a network. Devices in this category include Ethernet in all
its variations, VLANs, aggregates, and redundancies.

Routers
These devices operate at layer 3 of the OSI model and connect IP subnets to each
other. Routers move packets across a network in a hop-by-hop fashion.

Ethernet
These broadcast domains connect multiple hosts together on a common infra-
structure. Hosts communicate with each other using layer 2 media access control
(MAC) addresses.

IP addressing and subnetting
Hosts using IP to communicate with each other use 32-bit addresses. Humans often
use a dotted decimal format to represent this address. This address notation in-
cludes a network portion and a host portion, which is normally displayed as
192.168.1.1/24.

TCP and UDP
These layer 4 protocols define methods for communicating between hosts. The
Transmission Control Protocol (TCP) provides for connection-oriented commu-
nications, whereas the User Datagram Protocol (UDP) uses a connectionless para-
digm. Other benefits of using TCP include flow control, windowing/buffering, and
explicit acknowledgments.

ICMP
Network engineers use this protocol to troubleshoot and operate a network, as it is
the core protocol used (on some platforms) by the ping and traceroute programs.
In addition, the Internet Control Message Protocol (ICMP) is used to signal error
and other messages between hosts in an IP-based network.

Data center
A facility used to house computer systems and associated components, such as
telecommunications and storage systems. It generally includes redundant or back-
up power supplies, redundant data communications connections, environmental
controls (e.g., air conditioning and fire suppression), and security devices. Large
data centers are industrial-scale operations that use as much electricity as a small
town.

MPLS
Multiprotocol Label Switching (MPLS) is a mechanism in high-performance net-
works that directs data from one network node to the next based on short path
labels rather than long network addresses, avoiding complex lookups in a routing
table. The labels identify virtual links (paths) between distant nodes rather than

xx | Preface

endpoints. MPLS can encapsulate packets of various network protocols. MPLS
supports a range of access technologies.

Northbound interface
An interface that conceptualizes the lower-level details (e.g., data or functions) used
by, or in, the component. It is used to interface with higher-level layers using the
southbound interface of the higher-level component(s). In architectural overview,
the northbound interface is normally drawn at the top of the component it is defined
in, hence the name northbound interface. Examples of a northbound interface are
JSON or Thrift.

Southbound interface
An interface that conceptualizes the opposite of a northbound interface. The south-
bound interface is normally drawn at the bottom of an architectural diagram.
Examples of southbound interfaces include I2RS, NETCONE, or a command-line
interface.

Network topology

The arrangement of the various elements (links, nodes, interfaces, hosts, etc.) of a
computer network. Essentially, it is the topological structure of a network and may
be depicted physically or logically. Physical topology refers to the placement of the
network’s various components, including device location and cable installation,
while logical topology shows how data flows within a network, regardless of its
physical design. Distances between nodes, physical interconnections, transmission
rates, and/or signal types may differ between two networks, yet their topologies
may be identical.

Application programming interfaces
A specification of how some software components should interact with each other.
In practice, an API is usually a library that includes specification for variables,
routines, object classes, and data structures. An API specification can take many
forms, including an international standard (e.g., POSIX), vendor documentation
(e.g., the JunOS SDK), or the libraries of a programming language.

What’s in This Book?

Chapter 1, Introduction
This chapter introduces and frames the conversation this book engages in around
the concepts of SDN, where they came from, and why they are important to discuss.

Chapter 2, Centralized and Distributed Control and Data Planes
SDN is often framed as a decision between a distributed/consensus or centralized
network control-plane model for future network architectures. In this chapter, we
visit the fundamentals of distributed and central control, how the data plane is

Preface | xxi

generated in both, past history with both models,® some assumed functionality in
the present distributed/consensus model that we may expect to translate into any
substitute, and the merits of these models.

Chapter 3, OpenFlow

OpenFlow has been marketed either as equivalent to SDN (i.e., OpenFlow is SDN)
or a critical component of SDN, depending on the whim of the marketing of the
Open Networking Foundation. It can certainly be credited with sparking the dis-
cussion of the centralized control model. In this chapter, we visit the current state
of the OpenFlow model.

Chapter 4, SDN Controllers

For some, the discussion of SDN technologyis all about the management of network
state, and that is the role of the SDN controller. In this chapter, we survey the con-
trollers available (both open source and commercial), their structure and capabil-
ities, and then compare them to an idealized model (that is developed in Chapter 9).

Chapter 5, Network Programmability

This chapter introduces network programmability as one of the key tenets of SDN.
It first describes the problem of the network divide that essentially boils down to
older management interfaces and paradigms keeping applications at arm’s length
from the network. In the chapter, we show why this is a bad thing and how it can
be rectified using modern programmatic interfaces. This chapter firmly sets the
tone for what concrete changes are happening in the real world of applications and
network devices that are following the SDN paradigm shift.

Chapter 6, Data Center Concepts and Constructs

This chapter introduces the reader to the notion of the modern data center through
an initial exploration of the historical evolution of the desktop-centric world of the
late 1990s to the highly distributed world we live in today, in which applications—
as well as the actual pieces that make up applications—are distributed across mul-
tiple data centers. Multitenancy is introduced as a key driver for virtualization in
the data center, as well as other techniques around virtualization. Finally, we explain
why these things form some of the keys to the SDN approach and why they are
driving much of the SDN movement.

Chapter 7, Network Function Virtualization

In this chapter, we build on some of the SDN concepts that were introduced earlier,
such as programmability, controllers, virtualization, and data center concepts. The
chapter explores one of the cutting-edge areas for SDN, which takes key concepts
and components and puts them together in such a way that not only allows one to

3. Yes, we have had centralized control models in the past!

Xxii

| Preface

