|
STy
=1 ! oS
S ANnn!

.]
i
T g
ol I
¥ '
’J. -

R a4 & R 4 :
i Wik ' % T
e s 7 .] iil
& E T iy
! 4§ g i A
'T' NI | Al
111 | o L ’.‘ i
:‘)]f‘l - G N
'.}[;—‘Nf 1 e
% e 1 o '
DRy |

a systems approach

WILLIAM J. DALLY
R. CURTIS HARTING
TOR M. AAMODT

' Digital Design
Using VHDL

A Systems Approach

WILLIAM J. DALLY

Stanford University

R. CURTIS HARTING

Google, Inc.

TOR M. AAMQDTH
The University of British Coumbie

i CAMBRIDGE

&)y) UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS
University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107098862
© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2016
Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall
A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Dally, William J., author.
Digital design using VHDL : a systems approach / William J. Dally, Stanford University, California,
R. Curtis Harting, Google, Inc., New York, Tor M. Aamodt, The University of British Columbia.
pages cm
Includes bibliographical references and index.
ISBN 978-1-107-09886-2 (Hardback : alk. paper)
1. Digital integrated circuits—Computer-aided design. 2. Electronic digital computers—Computer-aided
design. 3. Digital electronics—Data processing. 4. VHDL (Computer hardware description language)
I. Harting, R. Curtis, author. [I. Aamodt, Tor M., author. III. Title.
TK7868.D5D3285 2015
621.38150285'5133-dc23 2015021269

ISBN 978-1-107-09886-2 Hardback
Additional resources for this publication at www.cambridge.org/9781107098862

Cambridge University Press has no responsibility for the persistence or accuracy
of URLSs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Digital Design Using VHDL
A Systems Approach

This introductory textbook provides students with a system-level perspective and the tools they need
to understand, analyze, and design digital systems. It goes beyond the design of simple combinational
and sequential modules to show how such modules are used to build complete systems.

« All the essential topics needed to understand modern design practice are covered, including:

* Design and analysis of combinational and sequential modules
» Composition of combinational and sequential modules

* Data and control partitioning

* Factoring and composition of finite-state machines

¢ Interface specification

» System timing

» Synchronization

* Teaches how to write VHDL-2008 HDL in a productive and maintainable style that enables
CAD tools to do much of the tedious work.

* Covers the fundamentals of logic design, describing an efficient method to design combina-
tional logic and state machines both manually and using modern CAD tools.

A complete introduction to digital design is given through clear explanations, extensive examples,
and online VHDL files. The teaching package is completed with lecture slides, labs, and a solutions
manual for instructors (available via www.cambridge.org/dallyvhdl). Assuming no previous digital
knowledge, this textbook is ideal for undergraduate digital design courses that will prepare students
for modern digital practice.

William J. Dally is the Willard R. and Inez Kerr Bell Professor of Engineering at Stanford University
and Chief Scientist at NVIDIA Corporation. He and his group have developed system architecture,
network architecture, signaling, routing, and synchronization technology that can be found in most
large parallel computers today. He is a Member of the National Academy of Engineering, a Fellow of
the IEEE, a Fellow of the ACM, and a Fellow of the American Academy of Arts and Sciences. He
has received numerous honors, including the ACM Eckert-Mauchly Award, the [IEEE Seymour Cray
Award, and the ACM Maurice Wilkes Award.

R. Curtis Harting is a Software Engineer at Google and holds a Ph.D. from Stanford University.
He graduated with honors in 2007 from Duke University with a B.S.E., majoring in Electrical &
Computer Engineering and Computer Science. He received his M.S. in 2009 from Stanford University.

Tor M. Aamodt is an Associate Professor in the Department of Electrical and Computer Engineering
at the University of British Columbia. Alongside his graduate students, he developed the GPGPU-Sim
simulator. Three of his papers related to the architecture of general purpose GPUs have been selected
as “Top Picks” by IEEE Micro Magazine and one as a “Research Highlight” by Communications of
the ACM magazine. He was a Visiting Associate Professor in the Computer Science Department at
Stanford University during his 2012-2013 sabbatical, and from 2004 to 2006 he worked at NVIDIA
on the memory system architecture (“framebuffer”) of the GeForce 8 Series GPU.

“Dally and Harting blend circuit and architecture design in a clear and constructive manner on
the basis of their exceptional experience in digital design.”

“Students will discover a modern and effective way to understand the fundamental under-
pinning of digital design, by being exposed to the different abstraction levels and views of
computing systems.”

Giovanni De Micheli, EPFL Switzerland

“Bill and Curt have combined decades of academic and industry experience to produce
a textbook that teaches digital system design from a very practical perspective without
sacrificing the theoretical understanding needed to train tomorrow’s engineers. Their approach
pushes students to understand not just what they are designing, but also what they are
building. By presenting key advanced topics, such as synthesis, delay and logical effort, and
synchronization, at the introductory level, this book is in the rare position of providing both
practical advice and deep understanding. In doing so, this book will prepare students well even
as technology, tools, and techniques change in the future.”

David Black-Schaffer, Uppsala University

“Everything you would expect from a book on digital design from Professor Dally. Decades of
practical experience are distilled to provide the tools necessary to design and compose complete
digital systems. A clear and well-written text that covers the basics and system-level issues
equally well. An ideal starting point for the microprocessor and SoC designers of the future!”

Robert Mullins, University of Cambridge and the Raspberry Pi Foundation

“This textbook sets a new standard for how digital system design is taught to undergraduates.
The practical approach and concrete examples provide a solid foundation for anyone who wants
to understand or design modern complex digital systems.”

Steve Keckler, The University of Texas at Austin

“This book not only teaches how to do digital design, but more importantly shows how to
do good design. It stresses the importance of modularization with clean interfaces, and the
importance of producing digital artifacts that not only meet their specifications, but which can
also be easily understood by others. It uses an aptly chosen set of examples and the Verilog
code used to implement them.”

“It includes a section on the design of asynchronous logic, a topic that is likely to become
increasingly important as energy consumption becomes a primary concern in digital systems.”
“The final appendix on Verilog coding style is particularly useful. This book will be valuable
not only to students, but also to practitioners in the area. | recommend it highly.”

Chuck Thacker, Microsoft

“A terrific book with a terrific point-of-view of systems. Everything interesting — and awful —
that happens in digital design happens because engineers must integrate ideas from bits to
blocks, from signals to CPUs. The book does a great job of focusing on the important stuff,
moving from foundations to systems, with the right amount of HDL (Verilog) focus to make
everything practical and relevant.”

Rob A. Rutenbar, University of lllinois at Urbana-Champaign

PREFACE

This book is intended to teach an undergraduate student to understand and design digital
systems. It teaches the skills needed for current industrial digital system design using a hardware
description language (VHDL) and modern CAD tools. Particular attention is paid to system-
level issues, including factoring and partitioning digital systems, interface design, and interface
timing. Topics needed for a deep understanding of digital circuits, such as timing analysis,
metastability, and synchronization, are also covered. Of course, we cover the manual design of
combinational and sequential logic circuits. However, we do not dwell on these topics because
there is far more to digital system design than designing such simple modules.

Upon completion of a course using this book, students should be prepared to practice digital
design in industry. They will lack experience, but they will have all of the tools they need for
contemporary practice of this noble art. The experience will come with time.

This book has grown out of more than 25 years of teaching digital design to undergraduates
(CS181 at Caltech, 6.004 at MIT, EE121 and EE108A at Stanford). It is also motivated by
35 years of experience designing digital systems in industry (Bell Labs, Digital Equipment,
Cray, Avici, Velio Communications, Stream Processors, and NVIDIA). It combines these two
experiences to teach what students need to know to function in industry in a manner that has
been proven to work on generations of students. The VHDL guide in Appendix B is informed
by nearly a decade of teaching VHDL to undergraduates at UBC (EECE 353 and EECE 259).

We wrote this book because we were unable to find a book that covered the system-level
aspects of digital design. The vast majority of textbooks on this topic teach the manual design
of combinational and sequential logic circuits and stop. While most texts today use a hardware
description language, the vast majority teach a TTL-esque design style that, while appropriate
in the era of 7400 quad NAND gate parts (the 1970s), does not prepare a student to work on
the design of a three-billion-transistor GPU. Today’s students need to understand how to factor
a state machine, partition a design, and construct an interface with correct timing. We cover
these topics in a simple way that conveys insight without getting bogged down in details.

Outline of the book

A flow chart showing the organization of the book and the dependences between
chapters is shown in Figure 1. The book is divided into an introduction, five main
sections, and chapters about style and verification. Appendix B provides a summary
of VHDL-2008 syntax.

XVi

Preface

Introduction)

_ J

Combinational Logic\

4. CMOS Logic
Circuits

5. Delay and
Power

1. Digital
Abstraction

3. Boolean
Algebra

6. Combinational
Logic

7. Combinational
VHDL

8. Combinational
Building Blocks

9. Combinational
Examples

. J

—

10. Arithmetic
Circuits

Arithmetic Circuits

11. Fixed- and
Floating-Point
Numbers

12. Fast Arithmetic
Circuits

J
13. Arithmetic —
Examples Asynchronous Logic
L 26. Asynchronous
v Circuits
e BY
@ 20. Verification &
Test 27. Flip- Flops
A. VHDL Coding
Styles 28. Metastability
Practical Design
~ g J 29. Synchronizers
\ J

14. Sequential
Logic

16. Data Paths

17. Factoring

Sequential Logic\

18. Microcode

19. Sequential
Examples

=4

21. System
Design

22. Interface

Timing

23. Pipelines

24. Interconnect

25. Memory
Systems

System Design\

Figure 1. Organization of the book and dependences between chapters.

Part | Introduction
Chapter | introduces digital systems. It covers the representation of information as
digital signals, noise margins, and the role of digital logic in the modern world. The
practice of digital design in industry is described in Chapter 2. This includes the

Preface Xvii

design process, modern implementation technologies, computer-aided design tools,
and Moore’s law.

Part I| Combinational logic

Chapters 3-9 deal with combinational logic circuits — digital circuits whose outputs
depend only on the current values of their inputs. Boolean algebra, the theoretical
underpinning of logic design, is discussed in Chapter 3. Switching logic and CMOS
gate circuits are introduced in Chapter 4. Chapter 5 introduces simple models for
calculating the delay and power of CMOS circuits. Manual methods for designing
combinational circuits from basic gates are described in Chapter 6. Chapter 7
discusses how to automate the design process by coding behavioral descriptions of
combinational logic in the VHDL hardware description language. Building blocks
for combinational logic, decoders, multiplexers, etc. are described in Chapter 8, and
several examples of combinational design are given in Chapter 9.

Part lll Arithmetic circuits

Chapters 10—13 describe number systems and arithmetic circuits. Chapter 10 describes
the basics of number representation and arithmetic circuits that perform the four
functions +, —, %, and + on integers. Fixed-point and floating-point number
representations and their accuracy are presented in Chapter 11. This chapter includes
a discussion of floating-point unit design. Techniques for building fast arithmetic
circuits, including carry look-ahead, Wallace trees, and Booth recoding, are described
in Chapter 12. Finally, examples of arithmetic circuits and systems are presented in
Chapter 13.

Part IV Synchronous sequential logic

Chapters 14-19 describe synchronous sequential logic circuits — sequential circuits
whose state changes only on clock edges — and the process of designing finite-state
machines. After describing the basics in Chapter 14, timing constraints are covered in
Chapter 15. The design of datapath sequential circuits — whose behavior is described
by an equation rather than a state table — is the topic of Chapter 16. Chapter 17
describes how to factor complex state machines into several smaller, simpler state
machines. The concept of stored program control, and how to build finite-state
machines using microcoded engines, is described in Chapter 18. This section closes
with a number of examples in Chapter 19.

Part V Practical design
Chapter 20 and the Appendix discuss two important aspects of working on digital
design projects. The process of verifying the correctness of logic and testing that it
works after manufacturing are the topics of Chapter 20. The Appendix teaches the
student proper VHDL coding style. It is a style that is readable, maintainable, and
enables CAD tools to produce optimized hardware. Students should read this chapter
before, during, and after writing their own VHDL.

Xvili

Preface

Part VI System design

Chapters 21-25 discuss system design and introduce a systematic method for the
design and analysis of digital systems. A six-step process for system design is
introduced in Chapter 21. System-level timing and conventions for the timing of
interfaces are discussed in Chapter 22. Chapter 23 describes pipelining of modules
and systems, and includes several example pipelines. System interconnects including
buses, crossbar switches, and networks are described in Chapter 24. A discussion of
memory systems is given in Chapter 25.

Part VII Asynchronous logic

Chapters 26-29 discuss asynchronous sequential circuits — circuits whose state
changes in response to any input change, without waiting for a clock edge. The basics
of asynchronous design including flow-table analysis and synthesis and the problem of
races are introduced in Chapter 26. Chapter 27 gives an example of these techniques,
analyzing flip-flops and latches as asynchronous circuits. The problem of metastability
and synchronization failure is described in Chapter 28. This section, and the book,
closes with a discussion of synchronizer design — how to design circuits that safely
move signals across asynchronous boundaries — in Chapter 29.

Teaching using this book

This book is suitable for use in a one-quarter (10-week) or one-semester (13-week)
introductory course on digital systems design. It can also be used as the primary text
of a second, advanced, course on digital systems.

There need not be any formal prerequisites for a course using this book. A good
understanding of high-school-level mathematics is the only required preparation.
Except for Chapters 5 and 28, the only place derivatives are used, the material does
not require a knowledge of calculus. At Stanford, E40 (Introduction to Electrical
Engineering) is a prerequisite for EEI08A (Digital Systems I), but students often take
EE108A without the prerequisite with no problems.

A one-quarter introductory course on digital systems design covers the material in
Chapters 1, 3, 6, 7, 8, 10, (11), 14, 15, 16, (17), 21, 22, (23), 26, 28, and 29. For the
one-quarter course we omit the details of CMOS circuits (Chapters 4 and 5), microcode
(Chapter 18), and the more advanced systems topics (Chapters 24 and 25). The three
chapters in parentheses are optional and can be skipped to give a slightly slower-paced
course. In offerings of this course at Stanford, we typically administer two midterm
examinations: one after covering Chapter 11, and the second after covering Chapter 22.

A one-semester introductory course on digital systems can use the three additional
weeks to include the material on CMOS circuits and a few of the more advanced
systems topics. A typical semester-long course covers the material in Chapters 1, 2, 3,

Preface XixX

4,(5),6,7,8,9,10,(11), 13, 14, 15, 16, (17), (18), (19), 21, 22, (23), (24), (25), 26,
(27), 28, and 29.

This book can be used for an advanced course on digital systems design. Such a
course covers the material from the introductory courses in more depth and includes
advanced topics that were omitted from the introductory courses. Such a course usually
includes a significant student project.

Materials

To support teaching with this book, the course website includes teaching materials:
lecture slides, a series of laboratories, and solutions to selected exercises. The
laboratories are intended to reinforce the material in the course and can be performed
via simulation or a combination of simulation and implementation on FPGAs.

ACKNOWLEDGMENTS

We are deeply indebted to the many people who have made contributions to the creation of
this book. This book has evolved over many years of teaching digital design at MIT (6.004)
and Stanford (EE108A). We thank the many generations of students who took early versions
of this class and provided feedback that led to constant refinement of our approach. Professors
Subhasish Mitra, Phil Levis, and My Le have taught at Stanford using early versions of this
material, and have provided valuable comments that led to many improvements. The course
and book benefited from contributions by many great teaching assistants over the years. Paul
Hartke, David Black-Shaffer, Frank Nothaft, and David Schneider deserve special thanks.
Frank also deserves thanks for contributing to the exercise solutions. Teaching 6.004 at MIT
with Gill Pratt, Greg Papadopolous, Steve Ward, Bert Halstead, and Anant Agarwal helped
develop the approach to teaching digital design that is captured in this book. An early draft of
the VHDL edition of this book was used for EECE 259 at the University of British Columbia
(UBC). We thank the students who provided feedback that led to refinements in this version.
The treatment of VHDL-2008 in Appendix B has been informed by several years of experience
teaching earlier VHDL versions in EECE 353 at UBC using a set of slides originally developed
by Professor Steve Wilton. Steve also provided helpful feedback on an early draft of the VHDL
edition.

Julie Lancashire and Kerry Cahill at Cambridge University Press helped throughout the
original Verilog edition, and Julie Lancashire, Karyn Bailey, and Jessica Murphy at Cambridge
Press helped with the current VHDL edition. We thank Irene Pizzie for careful copy editing
of the original Verilog edition and Abigail Jones for shepherding the original Verilog edition
through the sometimes difficult passage from manuscript to finished project. We thank Steven
Holt for careful copy editing of the present VHDL edition you see before you.

Finally, our families: Sharon, Jenny, Katic, and Liza Dally, and Jacki Armiak, Eric Harting,
and Susanna Temkin, and Dayna and Ethan Aamodt have offered tremendous support and made
significant sacrifices so we could have time to devote to writing.

CONTENTS

Preface
Acknowledgments

Part | Introduction

The digital abstraction

1.1 Digital signals

1.2 Digital signals tolerate noise

1.3 Digital signals represent complex data
1.3.1 Representing the day of the year
1.3.2 Representing subtractive colors

1.4 Digital logic functions

1.5 VHDL description of digital circuits and systems

1.6 Digital logic in systems
Summary

Bibliographic notes

Exercises

The practice of digital system design

2.1 The design process
2.1.1 Specification

2.1.2 Concept development and feasibility

2.1.3 Partitioning and detailed design
2.1.4 Verification

2.2 Digital systems are built from chips and boards

2.3 Computer-aided design tools

2.4 Moore’s law and digital system evolution
Summary

Bibliographic notes

Exercises

Part I Combinational logic

Boolean algebra
3.1 Axioms

page xv
XX

22
22
22
24
26
27
28
32
34
36
36
37

43
43

vi Contents

3.2
3.3
34
3.5
3.6

Properties

Dual functions

Normal form

From equations to gates
Boolean expressions in VHDL

Summary

Bibliographic notes

Exercises

4 CMOS logic circuits

4.1 Switch logic

4.2 Switch model of MOS transistors

4.3 CMOS gate circuits
4.3.1 Basic CMOS gate circuit
4.3.2 Inverters, NANDs, and NORs
4.3.3 Complex gates
4.3.4 Tri-state circuits
4.3.5 Circuits to avoid

Summary

Bibliographic notes

Exercises

5 Delay and power of CMOS circuits

5.1 Delay of static CMOS gates
5.2 Fan-out and driving large loads
5.3 Fan-in and logical effort
5.4 Delay calculation
5.5 Optimizing delay
5.6 Wire delay
5.7 Power dissipation in CMOS circuits
5.7.1 Dynamic power
5.7.2 Static power
5.7.3 Power scaling
Summary

Bibliographic notes

Exercises

6 Combinational logic design

6.1
6.2
6.3
6.4
6.5
6.6

Combinational logic

Closure

Truth tables, minterms, and normal form
Implicants and cubes

Karnaugh maps

Covering a function

44
46
47
48
51
54
55
55

58
58
62
68
69
70
72
75
76
77
78
78

82
82
85
86
89
92
94
98
98
99
100
101
101
102

105
105
106
107
110
113
115

Contents

6.7 From a cover to gates

6.8 Incompletely specified functions
6.9 Product-of-sums implementation
6.10 Hazards

Summary

Bibliographic notes

Exercises

VHDL descriptions of combinational logic

7.1 The prime number circuit in VHDL
7.1.1 A VHDL design entity
7.1.2 The case statement
7.1.3 The case? statement
7.1.4 The if statement
7.1.5 Concurrent signal assignment statements
7.1.6 Selected signal assignment statements
7.1.7 Conditional signal assignment statements
7.1.8 Structural description
7.1.9 The decimal prime number function

7.2 A testbench for the prime number circuit

7.3 Example: a seven-segment decoder

Summary

Bibliographic notes

Exercises

Combinational building blocks
8.1 Multi-bit notation

8.2 Decoders

8.3 Multiplexers

8.4 Encoders

8.5 Arbiters and priority encoders
8.6 Comparators

8.7 Shifters

8.8 Read-only memories

8.9 Read—write memories

8.10 Programmable logic arrays
8.11 Data sheets

8.12 Intellectual property
Summary

Bibliographic notes

Exercises

Combinational examples
9.1 Multiple-of-3 circuit

vii

116
117
119
121
123
124
124

129

129
129
131
134
136
136
137
138
138
141
143
148
153
154
154

157
157
157
163
171
173
180
183
184
189
192
193
195
195
196
196

199
199

viii Contents

10

1

12

13

9.2 Tomorrow circuit
9.3 Priority arbiter
94 Tic-tac-toe
Summary

Exercises

Part Il Arithmetic circuits

Arithmetic circuits

10.1 Binary numbers

10.2 Binary addition

10.3 Negative numbers and subtraction
10.4 Multiplication

10.5 Division

Summary

Exercises

Fixed- and floating-point numbers
11.1 Representation error: accuracy, precision, and resolution
11.2 Fixed-point numbers
11.2.1 Representation
11.2.2 Operations
11.3 Floating-point numbers
11.3.1 Representation
11.3.2 Denormalized numbers and gradual underflow
11.3.3 Floating-point multiplication
11.3.4 Floating-point addition/subtraction
Summary
Bibliographic note
Exercises

Fast arithmetic circuits
12.1 Carry look-ahead
12.2 Booth recoding

12.3 Wallace trees

12.4 Synthesis notes
Summary

Bibliographic notes

Exercises

Arithmetic examples
13.1 Complex multiplication
13.2 Converting between fixed- and floating-point formats

(RS S ST S S T S
AL WK N R
S N O b

o
N
=

245

i
<

NG T NG T N R NS R (S I (S T (S I S}
DNt b i b
oINS JIEN IS IR U, T S I (O B o’

9 o 9 o o
o=
h i

=2
wn

5]
o)
=)

269
276
278
284
286
287
287

290
290
291

Contents ix

13.2.1 Floating-point format 291
13.2.2 Fixed- to floating-point conversion 293
13.2.3 Floating- to fixed-point conversion 297
13.3 FIR filter 298
Summary 300
Bibliographic note 300
Exercises 300

Part IV Synchronous sequential logic

14 Sequential logic 305
14.1 Sequential circuits 305

14.2 Synchronous sequential circuits 307

14.3 Traffic-light controller 309

14.4 State assignment 312

14.5 Implementation of finite-state machines 313

14.6 VHDL implementation of finite-state machines 316
Summary 324
Bibliographic notes 324
Exercises 324

15 Timing constraints 328
15.1 Propagation and contamination delay 328

15.2 The D flip-flop 331

15.3 Setup- and hold-time constraints 331

15.4 The effect of clock skew 334

15.5 Timing examples 336

15.6 Timing and logic synthesis 337
Summary 339
Bibliographic notes 340
Exercises 340

16 Datapath sequential logic 344
16.1 Counters 344
16.1.1 A simpler counter 344

16.1.2 Up/down/load counter 346

16.1.3 A timer 349

16.2 Shift registers 352
16.2.1 A simple shift register 352

16.2.2 Left/right/load (LRL) shift register 353

16.2.3 Universal shifter/counter 353

16.3 Control and data partitioning 356

16.3.1 Example: vending machine FSM 357

Contents

16.3.2 Example: combination lock 367
Summary 372
Exercises 372
Factoring finite-state machines 375
17.1 A light flasher 375
17.2 Traffic-light controller 382
Summary 393
Exercises 394
Microcode 398
18.1 Simple microcoded FSM 398
18.2 Instruction sequencing 402
18.3 Multi-way branches 408
18.4 Multiple instruction types 410
18.5 Microcode subroutines 414
18.6 Simple computer 420
Summary 427
Bibliographic notes 427
Exercises 428
Sequential examples 431
19.1 Divide-by-3 counter 431
19.2 SOS detector 432
19.3 Tic-tac-toe game 439
19.4 Huffman encoder/decoder 439

19.4.1 Huftfman encoder 440

19.4.2 Huffman decoder 442
Summary 448
Bibliographic note 448
Exercises 448

Part V Practical design

Verification and test 453
20.1 Design verification 453
20.1.1 Verification coverage 453
20.1.2 Types of tests 454
20.1.3 Static timing analysis 455
20.1.4 Formal verification 455
20.1.5 Bug tracking 456
20.2 Test 456

20.2.1 Fault models 456

