
Philippe Di Francesco Pierre Mathieu David Sénéchal

Conformal Field Theory

Vol.1

共形场论

第1卷

Springer

光界用出出版公司 www.wpcbj.com.cn Philippe Di Francesco Pierre Mathieu David Sénéchal

Conformal Field Theory

With 57 Illustrations

图书在版编目 (CIP) 数据

共形场论=Conformal Field Theory. 第1卷: 英文/(法) 菲利普迪弗朗切斯科 (Francesco, P.D.) 著. —北京: 世界图书出版公司北京公司, 2008.12 ISBN 978-7-5062-9261-0

Ⅰ.共… Ⅱ.菲… Ⅲ.场论-英文 Ⅳ.0412.3

中国版本图书馆CIP数据核字 (2008) 第195295号

书 名: Conformal Field Theory Vol.1

作 者: P. D. Francesco, P. Mathieu & D. Senechal

中译名: 共形场论 第1卷

责任编辑: 高蓉 刘慧

出版者: 世界图书出版公司北京公司

印 刷 者: 三河国英印务有限公司

发 行: 世界图书出版公司北京公司(北京朝内大街 137号 100010)

联系电话: 010-64015659

电子信箱: kjsk@vip.sina.com

开 本: 24开

印 张: 21.5

版 次: 2009年01月第1次印刷

版权登记: 图字:01-2008-5580

书 号: 978-7-5062-9261-0/O·647 定 价: 69.00元

世界图书出版公司北京分公司已获得 Springer 授权在中国大陆独家重印发行

Philippe Di Francesco Commissariat l'Énergie Atomique Centre d'Études de Saclay Service de Physique Théorique Gif-sur-Yvette, 91191 France

Pierre Mathieu Département de Physique Université Laval Québec, QC G1K 7P4 Canada

David Sénéchal Département de Physique Université de Sherbrooke Sherbrooke, QC J1K 2R1 Canada

Series Editors

Joseph L. Birman Department of Physics City College of CUNY New York, NY 10031, USA

Jeffrey W. Lynn Reactor Radiation Division National Institute of Standards Trinity College and Technology

Gaithersburg, MD 20899, USA

Mark P. Silverman Department of Physics Hartford, CT 06106, USA

H. Eugene Stanley

Center for Polymer Studies Physics Department **Boston University** Boston, MA 02215, USA

Mikhail Voloshin

Theoretical Physics Institute Tate Laboratory of Physics University of Minnesota Minneapolis, MN 55455 USA

Library of Congress Cataloging-in-Publication Data Di Francesco, Philippe.

Conformal field theory / Philippe Di Francesco, Pierre Mathieu, David Sénéchal.

cm. - (Graduate texts in contemporary physics) Includes bibliographical references and index. ISBN 0-387-94785-X (hrdcvr : alk. paper)

1. Conformal invariants. 2. Quantum field theory. I. Mathieu. Pierre, 1957- . II. Sénéchal, David. III. Title. IV. Series. OC174.52.C66D5 1996 530.1'43 - dc20 96-23155

© 1997 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People's Republic of China only and not for export therefrom.

Graduate Texts in Contemporary Physics

Series Editors:

Joseph L. Birman Jeffrey W. Lynn Mark P. Silverman H. Eugene Stanley Mikhail Voloshin

Springer

New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Graduate Texts in Contemporary Physics

- R.N. Mohapatra: Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics, 2nd Edition
- R.E. Prange and S.M. Girvin (eds.): The Quantum Hall Effect
- M. Kaku: Introduction to Superstrings
- J.W. Lynn (ed.): High-Temperature Superconductivity
- H.V. Klapdor (ed.): Neutrinos
- J.H. Hinken: Superconductor Electronics: Fundamentals and Microwave Applications
- M. Kaku: Strings, Conformal Fields, and Topology: An Introduction
- A. Auerbach: Interacting Electrons and Quantum Magnetism
- Yu.M. Ivanchenko and A.A. Lisyansky: Physics of Critical Fluctuations
- P. Di Francesco, P. Mathieu, and D. Sénéchal: Conformal Field Theories

This book is dedicated to our families

影印版前言

所谓共形场论,就是共形群变换下不变的经典或量子场论。共形变换群是庞加莱群(Poincare Group)的推广。

共形场论(CFT)是过去 20 年里理论物理中最活跃且成果丰硕的研究 领域之一。到目前为止,本书是第一部,也是唯一一部全面系统介绍共形场论的专著。

共形场论已经广泛应用于弦理论、统计物理、凝聚态物理和纯粹数学等诸多方面的研究。例如:弦的世界面(Worldsheet)所构成的黎曼面由二维共形场论来刻画:在数学理论中,如Borcherds(菲尔兹奖获得者)提出的顶点算子代数(Vertex Operator Algebra),即为二维共形场论的代数理论,Drinfeld(菲尔兹奖获得者)等提出的所谓手征代数(Chiral Algebra),则是试图从代数几何的观点理解二维共形场论。

本书共18章,分为3个部分。

第1部分——简介。第1章中对本书涉及的相关概念进行了简单回顾。 第2章是量子场论的一些基本概念,如自由玻色(费米)子,路径积分, 关联函数,对称与守恒量,以及能动张量。第3章则涉及统计力学的一些 基本概念,如玻尔兹曼分布,临界现象,重整化群和转移矩阵。

第2部分——基础理论。首先,第4章介绍了全局的共形不变。然后, 第5章详细论述了有关二维共形不变基本而重要的概念,内容包括初级 场、关联函数、Ward 恒等式、自由场、算子积展开和中心荷等等。第6 章则是更为详细论述算子表述下的共形场论,此章的重点是 Virasoro 代数和顶点代数。随后两章论述了极小模型,极小模型是共形场论中最重要的模型之一。第 9 章和第 10 章分别介绍库仑气体和模不变,屏蔽算子和 Verlinde 公式等重要概念亦先后引入。第 11、12 两章分别介绍了 Q-态 Potts 模型和二维 Ising 模型。

第 3 部分——具有李群对称性的共形场论。第 13 章介绍了单李代数的一些基本内容,如单李代数的结构,最高权表示和特征标等等。第 14 章为仿射李代数(亦称 Kac-Moody 代数),内容基本与第 13 章平行。第 15~17章,讨论的主题都是 WZW(Wess-Zumino-Witten)模型。WZW 模型是二维共形场论中另一个最重要的模型,它集中体现了二维共形场论的各种性质。最后一章,即 18 章为陪集构造。陪集构造是共形场论最重要的手段之一。对于物理学或是数学工作者而言,陪集构造方法将二维共形场论的研究带入到一个新的天地。

本书各章之后有大量的练习题,可检验和加深对所学内容的理解。

本书可作为高等院校理论物理和数学专业高年级本科生和研究生教材,也可供物理学和数学等相关学科研究人员参考。对于这些领域的研究人员和高校师生,这是一本不可多得的参考书。

Preface

This is the first extensive textbook on conformal field theory, one of the most active areas of research in theoretical physics over the last decade. Although a number of review articles and lecture notes have been published on the subject, the need for a comprehensive text featuring background material, in-depth discussion, and exercises has not been satisfied. The authors hope that this work will efficiently fill this gap.

Conformal field theory has found applications in string theory, statistical physics, condensed matter physics, and has been an inspiration for developments in pure mathematics as well. Consequently, a reasonable text on the subject must be adapted to a wide spectrum of readers, mostly graduate students and researchers in the above-mentioned areas. Background chapters on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras have been included to provide help to those readers unfamiliar with some of these subjects (a knowledge of quantum mechanics is assumed). This textbook may be used profitably in many graduate courses dealing with special topics of quantum field theory or statistical physics, string theory, and mathematical physics. It may also be an instrument of choice for self-teaching. At the end of each chapter several exercises have been added, some with hints and/or answers. The reader is encouraged to try many of them, since passive learning can rapidly become inefficient.

It is impossible to encompass the whole of conformal field theory in a pedagogical manner within a single volume. Therefore, this book is intentionally limited in scope. It contains some necessary background material, a description of the fundamental formalism of conformal field theory, minimal models, modular invariance, finite geometries, Wess-Zumino-Witten models, and the coset construction of conformal field theories. Chapter 1 provides a general introduction to the subject and a more detailed description of the role played by each chapter. In building the list of references listed at the end of this volume, the authors have tried to be as complete as possible and hope to have given appropriate credit to all.

The authors intend to complete this work with a second volume, that would deal with the following subjects: Superconformal field theory (N = 1, 2), parafermionic

models, W-algebras, critical integrable lattice models, perturbed conformal field theories, applications to condensed matter physics, and two-dimensional quantum gravity.

ACKNOWLEDGMENTS

Modern, computerized book production minimizes the number of trivial errors, but one still has to rely on friendly humans to detect what the authors themselves have overlooked! We are grateful to Dave Allen, Luc Bégin, Denis Bernard, François David, André-Marie Tremblay, Mark Walton, and Jean-Bernard Zuber for their useful reading of various parts of the manuscript and, in many cases, their much-appreciated counsel. In particular, we thank M. Walton for numerous discussions on the subjects covered in part C of this volume and his constant interest in this project. P.D.F. is especially indebted to J.-B. Zuber, who patiently introduced him to the conformal world, and to the late C. Itzykson, who guided his steps through modern mathematics with his extraordinary and communicative enthusiasm. P.M. and D.S. acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and of "le Fonds pour la Formation de Chercheurs et l'Aide à la Recherche" (F.C.A.R.) of Québec.

Philippe Di Francesco Pierre Mathieu David Sénéchal February 1996

Contents

Preface	vii
Part A INTRODUCTION	1
1 Introduction	3
2 Quantum Field Theory	15
2.1 Quantum Fields	15
2.1.1 The Free Boson	15
2.1.2 The Free Fermion	21
2.2 Path Integrals	25
2.2.1 System with One Degree of Freedom	25
2.2.2 Path Integration for Quantum Fields	28
2.3 Correlation Functions	30
2.3.1 System with One Degree of Freedom	30
2.3.2 The Euclidian Formalism	31
2.3.3 The Generating Functional	33
2.3.4 Example: The Free Boson	33
2.3.5 Wick's Theorem	35
2.4 Symmetries and Conservation Laws	36
2.4.1 Continuous Symmetry Transformations	36
2.4.2 Infinitesimal Transformations and Noether's Theorem	39
2.4.3 Transformation of the Correlation Functions	42
2.4.4 Ward Identities	43
2.5 The Energy-Momentum Tensor	45
2.5.1 The Belinfante Tensor	46
2.5.2 Alternate Definition of the Energy-Momentum Tensor	49

		Contents
2.A	Gaussian Integrals	51
	Grassmann Variables	52
2.C	Tetrads	56
	Exercises	58
3 Stat	istical Mechanics	60
3.1	The Boltzmann Distribution	60
	3.1.1 Classical Statistical Models	62
	3.1.2 Quantum Statistics	66
3.2	Critical Phenomena	67
	3.2.1 Generalities	67
	3.2.2 Scaling	70
	3.2.3 Broken Symmetry	73
3.3	The Renormalization Group: Lattice Models	74
	3.3.1 Generalities	75
•	3.3.2 The Ising Model on a Triangular Lattice	77
3.4	The Renormalization Group: Continuum Models	82
	3.4.1 Introduction	82 84
	3.4.2 Dimensional Analysis 3.4.3 Beyond Dimensional Analysis: The φ^4 Theory	86
2 5	The Transfer Matrix	87
5.5	Exercises	90
Part B	FUNDAMENTALS	93
4 Glo	bal Conformal Invariance	95
4.1	The Conformal Group	95
4.2	Conformal Invariance in Classical Field Theory	99
	4.2.1 Representations of the Conformal Group in d Dimensions	99
	4.2.2 The Energy-Momentum Tensor	101
4.3	Conformal Invariance in Quantum Field Theory	104
	4.3.1 Correlation Functions	104
	4.3.2 Ward Identities	106
	4.3.3 Tracelessness of $T_{\mu\nu}$ in Two Dimensions	107
	Exercises	109
5 Co	nformal Invariance in Two Dimensions	111
5.1	The Conformal Group in Two Dimensions	112
	5.1.1 Conformal Mappings	112
	5.1.2 Global Conformal Transformations	113
	5.1.3 Conformal Generators	114
	5.1.4 Primary Fields	115
	5.1.5 Correlation Functions	116

Contents

5.2 Ward Identities	110
5.2.1 Holomorphic Form of the Ward Identities	118
5.2.2 The Conformal Ward Identity	121
5.2.3 Alternate Derivation of the Ward Identities	123
5.3 Free Fields and the Operator Product Expansion	127
5.3.1 The Free Boson	128
5.3.2 The Free Fermion	129
5.3.3 The Ghost System	132
5.4 The Central Charge	135
5.4.1 Transformation of the Energy-Momentum Tensor	136
5.4.2 Physical Meaning of c	138
5.A The Trace Anomaly	140
5.B The Heat Kernel	145
Exercises	146
6 The Operator Formalism	150
6.1 The Operator Formalism of Conformal Field Theory	151
6.1.1 Radial Quantization	151
6.1.2 Radial Ordering and Operator Product Expansion	153
6.2 The Virasoro Algebra	155
6.2.1 Conformal Generators	155
6.2.2 The Hilbert Space	157
6.3 The Free Boson	159
6.3.1 Canonical Quantization on the Cylinder	159
6.3.2 Vertex Operators	161
6.3.3 The Fock Space	163
6.3.4 Twisted Boundary Conditions	164
6.3.5 Compactified Boson	167
6.4 The Free Fermion	168
6.4.1 Canonical Quantization on a Cylinder	168
6.4.2 Mapping onto the Plane	169
6.4.3 Vacuum Energies	171
6.5 Normal Ordering	173
6.6 Conformal Families and Operator Algebra	177
6.6.1 Descendant Fields	177
6.6.2 Conformal Families	178
6.6.3 The Operator Algebra	180
6.6.4 Conformal Blocks	183
6.6.5 Crossing Symmetry and the Conformal Bootstrap	185
6.A Vertex and Coherent States	187
6.B The Generalized Wick Theorem	188
6.C A Rearrangement Lemma	190
6.D Summary of Important Formulas	192
Exercises	193

-	_		
	വ	nte	nts

7 Minimal Models I	200
7.1 Verma Modules	200
7.1.1 Highest-Weight Representations	201
7.1.2 Virasoro Characters	203
7.1.3 Singular vectors and Reducible Verma Modules	204
7.2 The Kac Determinant	205
7.2.1 Unitarity and the Kac Determinant	205
7.2.2 Unitarity of $c \ge 1$ Representations	209
7.2.3 Unitary $c < 1$ Representations	210
7.3 Overview of Minimal Models	211
7.3.1 A Simple Example	211
7.3.2 Truncation of the Operator Algebra	214
7.3.3 Minimal Models	215
7.3.4 Unitary Minimal Models	218
7.4 Examples	219
7.4.1 The Yang-Lee Singularity	219
7.4.2 The Ising Model	221
7.4.3 The Tricritical Ising Model	222
7.4.4 The Three-State Potts Model	225
7.4.5 RSOS Models	227
7.4.6 The $O(n)$ Model	229
7.4.7 Effective Landau-Ginzburg Description of Unitary	221
Minimal Models	231
Exercises	235
8 Minimal Models II	239
8.1 Irreducible Modules and Minimal Characters	240
8.1.1 The Structure of Reducible Verma Modules for Minimal	
Models	240
8.1.2 Characters	242
8.2 Explicit Form of Singular Vectors	243
8.3 Differential Equations for the Correlation Functions	247
8.3.1 From Singular Vectors to Differential Equations	247
8.3.2 Differential Equations for Two-Point Functions in	
Minimal Models	250
8.3.3 Differential Equations for Four-Point Functions in	
Minimal Models	252
8.4 Fusion Rules	255
8.4.1 From Differential Equations to Fusion Rules	255
8.4.2 Fusion Algebra	257
8.4.3 Fusion Rules for the Minimal Models	259
8.A General Singular Vectors from the Covariance of the OPE	265
8.A.1 Fusion of Irreducible Modules and OPE Coefficients	266
8 A 2 The Fusion Map F: Transferring the Action of Operators	271

Contents

	8.A.3 The Singular Vectors $ h_{r,s} + rs\rangle$: General Strategy	273
	8.A.4 The Leading Action of $\Delta_{r,1}$	275
	8.A.5 Fusion at Work	278
	8.A.6 The Singular Vectors $ h_{r,s} + rs\rangle$: Summary	281
	Exercises	283
9	The Coulomb-Gas Formalism	294
	9.1 Vertex Operators	294
	9.1.1 Correlators of Vertex Operators	295
	9.1.2 The Neutrality Condition	297
	9.1.3 The Background Charge	298
	9.1.4 The Anomalous OPEs	300
	9.2 Screening Operators	301
	9.2.1 Physical and Vertex Operators	301
	9.2.2 Minimal Models	303
	9.2.3 Four-Point Functions: Sample Correlators	306
	9.3 Minimal Models: General Structure of Correlation Functions	314
	9.3.1 Conformal Blocks for the Four-Point Functions	314
	9.3.2 Conformal Blocks for the N-Point Function on the Plane	315
	9.3.3 Monodromy and Exchange Relations for Conformal	
	Blocks	316
	9.3.4 Conformal Blocks for Correlators on a Surface of	
	Arbitrary Genus	318
	9.A Calculation of the Energy-Momentum Tensor	319
	9.B Screened Vertex Operators and BRST Cohomology: A Proof of	
	the Coulomb-Gas Representation of Minimal Models	320
	9.B.1 Charged Bosonic Fock Spaces and Their Virasoro	
	Structure	321
	9.B.2 Screened Vertex Operators	323
	9.B.3 The BRST Charge	324
	9.B.4 BRST Invariance and Cohomology	325
	9.B.5 The Coulomb-Gas Representation	327
	Exercises	328
1	0 Modular Invariance	335
	10.1 Conformal Field Theory on the Torus	336
	10.1.1 The Partition Function	337
	10.1.2 Modular Invariance	338
	10.1.3 Generators and the Fundamental Domain	339
	10.2 The Free Boson on the Torus	340
	10.3 Free Fermions on the Torus	344
	10.4 Models with $c = 1$	349
	10.4.1 Compactified Boson	349
	10.4.2 Multi-Component Chiral Boson	352

	Contents
10.4.3 Z ₂ Orbifold	354
10.5 Minimal Models: Modular Invariance and Operator Content	356
10.6 Minimal Models: Modular Transformations of the Character	s 359
10.7 Minimal Models: Modular Invariant Partition Functions	364
10.7.1 Diagonal Modular Invariants	365
10.7.2 Nondiagonal Modular Invariants: Example of the	
Three-state Potts Model	365
10.7.3 Block-Diagonal Modular Invariants	368
10.7.4 Nondiagonal Modular Invariants Related to an	
Automorphism	370
10.7.5 D Series from \mathbb{Z}_2 Orbifolds	370
10.7.6 The Classification of Minimal Models	372
10.8 Fusion Rules and Modular Invariance	374
10.8.1 Verlinde's Formula for Minimal Theories	375
10.8.2 Counting Conformal Blocks	376
10.8.3 A General Proof of Verlinde's Formula	378
10.8.4 Extended Symmetries and Fusion Rules	384
10.8.5 Fusion Rules of the Extended Theory of the	
Three-State Potts Model	386
10.8.6 A Simple Example of Nonminimal Extended Theory	<i>/</i> :
The Free Boson at the Self-Dual Radius	388
10.8.7 Rational Conformal Field Theory: A Definition	389
10.A Theta Functions	390
10.A.1 The Jacobi Triple Product	390
10.A.2 Theta Functions	392
10.A.3 Dedekind's η Function	394
10.A.4 Modular Transformations of Theta Functions	394
10.A.5 Doubling Identities	395
Exercises	396
11 Finite-Size Scaling and Boundaries	409
11.1 Conformal Invariance on a Cylinder	410
11.2 Surface Critical Behavior	413
11.2.1 Conformal Field Theory on the Upper Half-Plane	413
11.2.2 The Ising Model on the Upper Half-Plane	417
11.2.3 The Infinite Strip	419
11.3 Boundary Operators	421
11.3.1 Introduction	421
11.3.2 Boundary States and the Verlinde Formula	422
11.4 Critical Percolation	427
11.4.1 Statement of the Problem	427

11.4.2 Bond Percolation and the Q-state Potts Model

11.4.3 Boundary Operators and Crossing Probabilities

Exercises

429 430

433