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Introduction

“Learning the fundamentals of a programming language is one thing;
learning how to design and write effective programs in that language is
something else entirely” What Scott Meyers wrote in the Introduction to
Effective C++ is just as true for Perl.

Perl is a Very High Level Language—a VHLL for the acronym-aware. It
incorporates high-level functionality like regular expressions, networking,
and process management into a context-sensitive grammar that is more
“human,” in a way, than that of other programming languages. Perl is a
better text-processing language than any other widely used computer lan-
guage, or perhaps any other computer language, period. Perl is an incred-
ibly effective scripting tool for UNIX administrators, and it is the first
choice of most UNIX CGI scripters worldwide. Perl also supports object-
oriented programming, modular software, cross-platform development,
embedding, and extensibility.

Is this book for you?

We assume that you already have some experience with Perl. If you're look-
ing to start learning Perl, you might want to wait a bit before tackling this
book. Our goal is to make you a better Perl programmer, not necessarily a
new Perl programmer.

This book isn’t a definitive reference, although we like to think that you'd
keep it on your desktop. Many of the topics we cover can be quite compli-
cated and we don’t go into every detail. We try to give you the basics of the
concepts that should satisfy most situations, but also serve as a starting
point for further research if you need more. You will still need to dive into
the Perl documentation and read some of the books we list in Appendix A.
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Introduction

There is a lot to learn about Perl.

Once you have worked your way through an introductory book or class on
Perl, you have learned to write what Larry Wall, Perl’s creator, fondly refers
to as “baby talk.” Perl baby talk is plain, direct, and verbose. It's not bad—
you are allowed and encouraged to write Perl in whatever style works for
you.

You may reach a point where you want to move beyond plain, direct, and
verbose Perl toward something more succinct and individualistic. This
book is written for people who are setting off down that path. Effective Perl
Programming endeavors to teach you what you need to know to become a
fluent and expressive Perl programmer. This book provides several differ-
ent kinds of advice to help you on your way.

= Knowledge, or perhaps, “Perl trivia.” Many complex tasks in Perl have
been or can be reduced to extremely simple statements. A lot of learn-
ing to program effectively in Perl entails acquiring an adequate reser-
voir of experience and knowledge about the “right” ways to do things.
Once you know good solutions, you can apply them to your own
problems. Furthermore, once you know what good solutions look like,
you can invent your own and judge their “rightness” accurately.

= How to use CPAN. The Comprehensive Perl Archive Network is mod-
ern Perl’s killer feature. With over 5 gigabytes of Perl source code,
major frameworks, and interfaces to popular libraries, you can accom-
plish quite a bit with work that people have already done. CPAN
makes common tasks even easier with Perl. As with any language, your
true skill is your ability to leverage what has already been done.

= How to solve problems. You may already have good analytical or
debugging skills from your work in another programming language.
This book teaches you how to beat your problems using Perl by show-
ing you a lot of problems and their Perl solutions. It also teaches you
how to beat the problems that Perl gives you, by showing how to effi-
ciently create and improve your programs.

m Style. This book shows you idiomatic Perl style, primarily by exam-
ple. You learn to write more succinct and elegant Perl. If succinctness
isn’t your goal, you at least learn to avoid certain awkward constructs.
You also learn to evaluate your efforts and those of others.

= How to grow further. This book doesn’t cover everything you need
to know. Although we do call it a book on advanced Perl, not a whole
lot of advanced Perl can fit between its covers. A real compendium of
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advanced Perl would require thousands of pages. What this book is
really about is how you can make yourself an advanced Perl pro-
grammer—how you can find the resources you need to grow, how to
structure your learning and experiments, and how to recognize that
you have grown.

We intend this as a thought-provoking book. There are subtleties to many
of the examples. Anything really tricky we explain, but some other points
that are simple are not always obvious. We leave those to stand on their
own for your further reflection. Sometimes we focus on one aspect of the
example code and ignore the surrounding bits, but we try to make those
as simple as possible. Don’t be alarmed if you find yourself puzzling some-
thing out for a while. Perl is an idiosyncratic language, and in many ways
is very different from other programming languages you may have used.
Fluency and style come only through practice and reflection. While learn-
ing is hard work, it is also enjoyable and rewarding.

The world of Perl

Perl is a remarkable language. It is, in our opinion, the most successful
modular programming environment.

In fact, Perl modules are the closest things to the fabled “software ICs” (that
is, the software equivalent of integrated circuits, components that can be
used in various applications without understanding all of their inner
workings) that the software world has seen. There are many reasons for
this, one of the most important being that there is a centralized, coordi-
nated module repository, CPAN, which reduces the amount of energy
wasted on competing, incompatible implementations of functionality. See
Appendix A for more resources.

Perl has a minimal but sufficient modular and object-oriented program-
ming framework. The lack of extensive access-control features in the lan-
guage makes it possible to write code with unusual characteristics in a
natural, succinct form. It seems to be a natural law of software that the
most-useful features are also the ones that fit existing frameworks most
poorly. Perl’s skeletal approach to “rules and regulations” effectively sub-
verts this law.

Perl provides excellent cross-platform compatibility. It excels as a systems
administration tool on UNIX because it hides the differences between



