Broadv:ew PEARSON - EREmRPE

www.broadview.com.cn

Eftective Perl

iy iy o1 EPer IS 805 TE (20)

7 Joseph N. Hall
[Z2] Joshua A. McAdams =
brian d foy

Zctive
PERL

PROGRAMMING

.........................

- RRSmP

Effective Perl

i 5 R Per UNRSINA 2051k (20K)

Effective Perl Programming: Ways to Write Better, More Idiomatic Perl, 2F

(ShEA)

Joseph N. Hall
[22] Joshua A. McAdams =
brian d foy

% F I N & ARRAL
Publishing House of Electronics Industry
AL 5{-BEIIING

A E N

455 Perl GHELGRAY “F 27 HE(E, TIREET 100 KM RAES], RS gL
Fhgp R F 5 5 R, AR R & RhE A LI B, AT LB 2N, TfiLE
o 2 B RS IE T MG AR — e, 8 5B S A T VP Perl SUSAUHT L, (ER7 N
ERE, WEASAE,

45 A Perl B FF RV T — Sl b miln 28, Wik 2k Perl B AT =, R HIEAS
%:'J;O

Original edition, entitled Effective Perl Programming: Ways to Write Better, More Idiomatic Perl, 2E,0321496949
by Joseph N. Hall, Joshua A. McAdams and brian d foy, published by Pearson Education, Inc., publishing as
Addison-Wesley, Copyright©2010 Pearson Education,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

45330 BAEIRR % 745 H BRURL Y Pearson Education 5 A= 27T AR IE BHAT R 23 =152 T L Tk HiRR
i, RLHMEB BT, AELMER A HISb RABRIEMED .

AR E RN (PRERE R, R TB R E S B #HE%RAT.
A5 Sr ME M4 Pearson Education 37 A= 3 # HBUEHIBOERi th4r2%, TARER ARHIE.
MRALHH B & TRPEid S &l 01-2015-6093

BRERRE (CP) 3B

Effective Perl: %5 /&5 i i Perl {ARBHA 2L 757k : 45 2 It =Effective Perl Programming: Ways to Write Better,
More Idiomatic Perl: 2nd Edition: 353/ (2) /R (HallJN.), (3) ZwilE4H (McAdams,J.A.), (3£)
FEE (foyB.D.) . —dtit: W1 Likiikiit, 20164

VEUS L ETEE)

ISBN 978-7-121-27268-4

L QE-1L Q& @FE - @ 1L @ Perl {55 — BFkI - %X V. O TP312
v B B AS (B 455 CIP $dE 4% (2015) 5 227489 5

TR ok B
Bl Kl =f&4e DENEARA F
4T =l EEDEHEARA]
Wk R AT BTk kit
JepchigiEx AR 173 5% HBZW: 100036
F A<, 787x9801/16 ENgk: 30.75 FH: 590 T
B Uk 2016 4F 4 A 1AR
Efl K. 2016 4F 4 A 1 REDRI
£ fr: 89.00 T

FLFT S o - Tl AR R S A G AR IR, 5 1 WS A5 R e . 5 R Rk H AR ITIHEKSR,
2 R P L% . (010) 88254888,

B RIS &ML 5 zts@pheicom.cn, FERREALEE R 1# K lB % dbgq@phei.com.cn,

R 2512k, (010) 88258888,

HEFFr

TAERT, HIIFLGEF T Perd B, RINHEHCHXITIES B4 THARE T —4,
RX TR E AL, RS HEAR LS, MR AFIER, WUEARLL B IE BT Perl J7 & A
FHOT A R B TR S5, AN ENRRE HERZHRT, EAREREXE, 0
EWE A CMHIRGIEAE 2%, A CH TAERCR T A S AR,

Pz, IR TABRE 1. A, BARBIREAISEBERG B
BE, E-HEAERWEE, —A5RESITIRIE K,

Joseph N. Hall FiX A4 WA HEE A E AN BART, B —BANARE, (B EEE,
i ELFF B AN . AREIRBE, FRA16 209 Perl Tips HLFH (http://perltraining.com.au/
tips/) IER2% T AR RARITIN, X608 FH— BB T Ped A XML R,

XF—ITEGE R, HEEWRERKIZA, M E 5 A NA =R AR,
P, AEFARH R4 ABUR VT XA AT A58 2 MDA AR T S, B EE B R XA TR
A A Perl #E XA BB Z T

AL, brian X Perl B 2L RARA HIHH . MALE TIRE Per i 5 I HIF,
17 53 i hL— 1 24 35(The Perl Review), 3 HL A2 Perl B J5 W34 o (4 FAQ(¥ ILIW) AR 25),
FIMBTEARZ Perl M Hmfdih 54t X — HEA BB,

M7 Josh W LA Iz 85 (1) 3% 44 46 % 3 Perlcast (145, AN 2005 4FEFF 4G 7E 134> Wk o 2L
T AR Perl HriH 1o Josh BREFRBNIRLE AW . AdREIN, SHBATHAT R, X
fib A SRR T REAIR, WilkIRIHBEFEAT

B2, BEMEEMLE WAMEEABRE 2 lt, RBFIFZZE, FRUEIMREE
FIRIX A S RRE, BURCSAES 1 MO RS SRR

Paul Fenwick

Perl Training Australia % 4%

i

BEEE

IR Z Perl F2)7 B AR E T A B A0S 1 RS 520, 7F 1998 4F Addison-Wesley H AR 1 bt
AR, B BT ERLE M Perle 4B .com KEIIETENGE, BTG 1 & HTML i AEBRE
HENRRSF A TAE, WX A—BIF G4, sl Sl st 7t A S ioshe. A B
A “ERHK EANE Programming Perl' . Learning Perl® JEAS |5 X Se WA B A4

ST I LA AN HAMY Perl 4. A4 S FRAF 3D 3 R IZARMEAR G2 24 1 35 [5
BB DL, ARES A 45 15 T BT R I BRI AR R AR, TR ZHER R T Java F
Perl B ANA AR5 W AE — AN/ v LR O RAR 5, BB S A RESALAS, Wil
REFHATE BT B AR R S B .

AU, ABE R T T2 A, KB Joseph Hall X Perl G221 321
B A A AR NEE . SRR BHE A0 Per SRFEIEAE, MTESS 1 MR AR Y
HIE B IAERRE R S .

ANId, a4 Perl fTHEFUFN 1998 4FAH L EL 264 TR KMZE(L, EIMRMEMESHEL T,
CPAN (Comprehensive Perl Archive Network, Perl ZE& MM) UL LA R E, 4
BT Perd SRS AR, ATESEH TIFSEHEFMRFEITR, X 4%
WFRR T EZM Perl LK, WA TIRZH A RS BT IS

AMA S 1 BRI LAK, Perd A WA TR KL, 45 1 JAELE T M Perl 4 B Perl
5T ERTIA, YEFRFRABSRAET 128] Perl 4 f— 267t 4R 7EXNERA Y, Ffi13t
A LIHER TiX SR, IR — Perl, LR Perl 5 (AFARIHE Perl 6, FHAEHES
E—&f) ,

R Perl B ZAREWE HF Unicode (M AXAUE ASCIT) , PRI AR R 258 Mk — &, 38
XA F & TS T —8, JLFER, 1 Michael Schwern IESIZ R, Perl B2 RN Bk
MR ZHIE S, LB MEREIE B RaE o Perl By 220 IR0 “BEFERTAY” BV Bl T o
AR, B R PE JF A A FF At AT LA 5 e, W SRR & =, AR AR

1 Larry Wall, Tom Christiansen & Jon Orwant 53] Programming Perl, Third Edition (0'Reilly Media,
2000)

2 Randal L. Schwartz, Tom Phoenix } brian d foy BEM Learning Perl, Fifth Edition (0'Reilly Media,
2008)

eV S

X B

I B — BRI SR 2 B @, SRR E— A E R E T, Walk—E”- T
fRECHTY Perl IEDIAFME , AR PAE A28 H b IR S A FHAY

Perl {THRTE AT, B0 R FEARWIH P, A L6 5 AR B st (i 15 1 — 4% 5 1 i ok
A28, HAN Moose XA “JEBUAL” 9 Perl T [XS HESE, PRI AR AL AN 5 oA M b 25 TR
1T, B EE, A POE (Perl Object Environment, Petl WERIRE) . MBRLER
BB AT GUI T B S th 6 Bk RIRE R SR R T B A ik A Brh e . Al K
1B 23RS —4% More Effective Perl, |l fE AT E ZHINE

R Per A A ORI & H RN E T 5 T BUAKH R IS MHFFIRATIA
SR P, LR B2 T TS R A B, Rl F AR B
BT, M AR — 2 Perl B, SXREMHOCEE LA VR AR Y iTAS 5 P i iX 28
TR T R,

i}

Joseph N. Hall, Joshua A. McAdams ## brian d foy

%1 WES

M ATl C A C++ AR, FEBHET Perd 205, BS54 TAT HRZLA—
FIBIAE S, PRV AR PR AR FrameMaker B0, SNEF T A
2 5 AT TEIKM Crr ALHS, FORARDMLAT ORI . BE%0E, 3 AR
B,

ERET T R A]

TR, KR CRF Cr+ T H AR T ERE R AR5 R
R AR A R T AR FE R LB B 2, AT B RE R B TP BTl i 7oy — 1] R i
E2UE. RS 3AH MR, AL R — A TSGR A A AT AR H

BRI Perl BOLHREEIH 2 — . W23 TR Perl S AMMIAE 5 3 K74 e
AETE TR R A B T BCIE RTIREE C N o+ T B T 1) 3L)
RFE N, TR T Ped, M HIGIAMBR L TE . REHDT— XA,
A F o e AL T SOA SR TIAE s B — AR RO, U2 R R 4)
—ABRFALTR. FRH Perl FAE T RS —RRESIHL T AhAE, A0 BT
b 35 SR A S LR

AT 5 XA H

Fo— HHRE N —AMER . AEHER B B TR/, R ERE T, AiE—
KgE=A, RELREADE (HEHRE) . Z/FH 19854, RS TESEHRMA
24377 (East Lansing) 2870 Clarion BHZI/NAER RV, BfifG — 2047 IR B, 348
IREE — SRS /NI, AR &t ek, URRUTAE 5 R R g, 3K
BB TERLIMEN &k, A, BEREREIE, AAWEM#EESOAR SR,
HRE . A, MR, XA R RS T LR

B

Horp—/ /2 Randal Schwartzo, FAE—AN TR0 H PR MR B —FEZ A (X
P — MR £, R WM LK H, AHE K ZHOAM Randal fA
AERS RIX) o JE MR R4 Perl, 3 T —BRRRIFRWET .

TEX B b, R E/EM B WIE T, 78 C++. Perl. Internet Fl World Wide Web
SFIXECIAT U TBE TIRZAE, AT DL b — S R AR PSS Tk, I RIZEE Perl
MR TR A X LB, R EERE AR, AT HBRH BHEF Per
FIG E E B BN B B SRk

1996 4F 5 H, TERAZER—KIF R #H K2 b, - Keith Wollman A T —IKASHR . 4t
HBEARBBEAEE R, AT IHE TR 8R Al I KA. 2SR5 Perl MR, il
3. “RHEFF—A 40 Effective Perl)2 ANSZHGWE? ” XASBLAFTEh T, BHIHE,
Scott Meyers [Effective C++ ER B B WM —4 C++ EAE, MAILEREINE —4 Perl H9H B
REMFEE.

Keith AR IRAAEFH 00, 55 7 —Beit], FAE Randal (U BY T B T — iR |
1M Addison-Wesley 23 Attt 73X~ 1E M,

Rk, GRIFE T HIFWHE B SVE, % 7B IR AT — AR B2 12 A~/ Net,
% T H FrameMaker GAE, iB7E Perl 5 Porters M52 F R R AT M] T A /b iy () 5, 3]
TILHABRTM, 85 TIREZIRLEL Perd {UY, 108 T 1R 221R 2 REE AT S AN 5 0] e
TEA B GORMN , (/K 23 R B — 288 1k) O 22088 SRR) Perl AR SRXRE R T — Bt]
AR — A T .

XA PR — 22K, AR S KRR ERAEF T Per BT FR UK B 250 F0 15
Mo dln, ARRIREHAIERS B2, AR BRAIME, WhERRE R,

Joseph N. Hall
T A AR RSB B T
1998 4

il 13

Xi

i

5 2 hREis

WEANBRATHE TH 2R, 80 TR 2 — L m Xk, A5
Abigail , Patrick Abi Salloum, Sean Blanton, Kent Cowgill, Bruce Files, Mike Fraggasi, Jarkko
Hietaniemi, Slaven Rezic. Andrew Rodland. Michael Stemle 11 Sinan Uniir, 5+ A3 200 75 th
2 EARR WA T TTRK

AHMEEANAEANR T B, MATLFEXT B —8R R T, RN
TS5 S, B F ZERA S TEATAERTIS LI K. flfi1)2 Elliot Shank, Paul Fenwick &
Jacinta Richardson, AR, SR RGPS FRINEEET AR, XHEEZR/N
FAK—E BAETRAN A G B A B 5 a2 L.

Joseph N. Hall., Joshua A. McAdams #= brian d foy

5 1 hREis

XABERAS . RANCEMMR 2T, HMEAREITHFEEFR. /E4 . i
B R HAR T N G RFE B 2 BRSO B BT kg AR S 1 I SR T 5 B)
RGN

Chip Salzenberg 1 Andreas “MakeMaker” Konig #f B IE T A/ DEEF IR, #5445 E
hikE%R. Xt Chip FBBETTIEH T HRBEMN . BWBEFHRELELRD T, [Chip B!

Perl 5 Porters BRI R TARA WS TIRKHMER, MITHRMAE TR0, Hph
HF R S Jeffrey Friedl, Chaim Frenkel, Tom Phoenix, Jon Orwant (DA The Perl Journal
#5544) Fl Charlie Stross.

Randal Schwartz 2844 H1EH . HMAN Just Another Perl Hacker A& #E A, fhth 23k i
FEMBARETA . FrLAARARERB P AEAEMRE, oA S (FFEER) .
JEH G Randal, FOAMAEAH EATH T VR 28R A 1

S Larry Wall Q35 T Perl, WA AN ME TRRZHEEN], I HAE—2e 5§k T
i,

xiv Bt

AEAN Addison-Wesley 7EIX N0 H A 4E, WM AER 28, X BB IR AHE R
M T A, FrH 2R Kim Fryer, Ben Ryan. Carol Nelson 1 Keith Wollman .,

WA 22 AR A TE At 7 T HE 4L T #5 B, Nick Otlans, Chris Ice il Alan Piszcz #F#E 9%
TR) B W) R TR LA B AT K AT AR 2 i Charlie Horton, Patrick Reilly Al Larry
Zimmerman W$EHE TIF2 R0, W4 17 IRIE KRS .

Gy b, FAEE ME ot FE p R AT R R R IE A, AH AT AN AT 4 M 52 2 Perd 7E £k T Mt A0
Programming Perl S35 RHARE M, SRR [FIE, RO/ oA QI 7 2ok ik, HIRZ
T T HBLEEA K Perl B2 HUA BERME LA LAY

JEH BRI Jeff Gong, MbSUERFIR “BEI” WIEA R, MMiERM T-1 KPS RSrigE.
Jeff BIETE UM LE% L

BRI R R RIX s 5, Ry RS EREASIE RARK A BE, IR IR . [
FEd, ERS R P EEZ) A (SCHT 1) PERITERE.

B, MU Donna, TREYARBEFERLA R, M2 Ll R 0 B b i) 3085 |
SR, XAFRICES K.

Joseph N. Hall
1998 4

X TEE

Joseph N. Hall, HFr “HLANMIE" , —EIIEMSMLEIH AT RS RS MEA 4KB N
F7#Y Radio Shack TRS-80 Model 1 1K, 14 % Bt —KHFZ A HLIFFE . Joseph PA L+ Z
KA SE R AR 20, A 1984 ERRTFFIE AT b4, MM 1987 4E2FF LA fH
FH UNIX 1 C, A 1993 4ELISK— AR Perl, 24805 it T HAGFHE S | WA
L FEE, LIRmERE,

Joshua A. McAdams {5 K T Perl #HIX EL3lE 5 4F, B T Perlcast, 4% M2 m
B YAPC:NA, ik Chicago.pm ZEIE, FEHAZLHA Perl 2 FHUE AT, &1
CPAN fE#& . XARAMAIE B LAE, RidIRTE & The Perl Review Fl Petl Advent Calendar 5
HXE, BTHE T, Josh BHLT Google, TEARH LAY H 8 I R HA—E W K Perdd, A~
i HEAT AR & .

brian d foy & (Perl &5 AT (55 5 W)) 1 Intermediate Perl 145 E%, VI (K
W Perl) WIMEE., MhkET H— Perl FH P 2H New York Perl Mongers, H R T The Perl
Review, HEFFAEERSY Perl B3, R—4 Per P, JEHTERS EAT.

Chapter 1

Chapter 2

T
HIS
Bt
XTEE

Introduction

The Basics of Perl

Item 1. Find the documentation for Perl and its modules.
Item 2. Enable new Perl features when you need them.
Item 3. Enable strictures to promote better coding.

Item 4. Understand what sigils are telling you.

Item 5. Know your variable namespaces.

Item 6. Know the difference between string and numeric comparisons.

Item 7. Know which values are false and test them accordingly.
Item 8. Understand conversions between strings and numbers.
Item 9. Know the difference between lists and arrays.

Item 10. Don’t assign undef when you want an empty array.
Item 11. Avoid a slice when you want an element.

Item 12. Understand context and how it affects operations.
Item 13. Use arrays or hashes to group data.

Item 14. Handle big numbers with bignum.

Idiomatic Perl

Item 15. Use $_ for elegance and brevity.

Item 16. Know Perl’s other default arguments.

Item 17. Know common shorthand and syntax quirks.
Item 18. Avoid excessive punctuation.

Item 19. Format lists for easy maintenance.

Item 20. Use foreach, map, and grep as appropriate.
Item 21. Know the different ways to quote strings.
Item 22. Learn the myriad ways of sorting.

Item 23. Make work easier with smart matching.

Item 24. Use given-when to make a switch statement.
Item 25. Use do {} to create inline subroutines.

Vii

Xiii
XV

12
14
17
19
21
23
27
31
34
37
41
45
47

51
53
56
60
66
68
70
73
77
84
86
90

iv

B%

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Item 26. Use List: :Util and List: :MoreUtils for easy list
manipulation.

Item 27. Use autodie to simplify error handling.

Regular Expressions

Item 28. Know the precedence of regular expression operators.
Item 29. Use regular expression captures.

Item 30. Use more precise whitespace character classes.

Item 31. Use named captures to label matches.

Item 32. Use noncapturing parentheses when you need only grouping.

Item 33. Watch out for the match variables.
Item 34. Avoid greed when parsimony is best.
Item 35. Use zero-width assertions to match positions in a string.

Item 36. Avoid using regular expressions for simple string operations.

Item 37. Make regular expressions readable.
Item 38. Avoid unnecessary backtracking.
Item 39. Compile regexes only once.

Item 40. Pre-compile regular expressions.
Item 41. Benchmark your regular expressions.
Item 42. Don’t reinvent the regex.

Subroutines

Item 43. Understand the difference between my and local.
[tem 44. Avoid using @_ directly unless you have to.

Ttem 45. Use wantarray to write subroutines returning lists.
Item 46. Pass references instead of copies.

Item 47. Use hashes to pass named parameters.

Item 48. Use prototypes to get special argument parsing.

Item 49. Create closures to lock in data.

Item 50. Create new subroutines with subroutines.

Files and Filehandles

Item 51. Don’t ignore the file test operators.

Item 52. Always use the three-argument open.

Item 53. Consider different ways of reading from a stream.
Item 54. Open filehandles to and from strings.

Item 55. Make flexible output.

Item 56. Use File: : Spec or Path: : Class to work with paths.

Item 57. Leave most of the data on disk to save memory.

References
Item 58. Understand references and reference syntax.

Item 59. Compare reference types to prototypes.

92
96

99
99

103
110
114
116
117
119
121
125
129
132
137
138
139
142

145

145
154
157
160
164
168
171
176

179
179

182
183
186
189
192
195

201
201
209

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Item 60. Create arrays of arrays with references.
Item 61. Don’t confuse anonymous arrays with list literals.
Item 62. Build C-style structs with anonymous hashes.
Item 63. Be careful with circular data structures.

Item 64. Use map and grep to manipulate complex data structures.

CPAN

Item 65. Install CPAN modules without admin privileges.
Item 66. Carry a CPAN with you.

Item 67. Mitigate the risk of public code.

Item 68. Research modules before you install them.

Item 69. Ensure that Perl can find your modules.

Item 70. Contribute to CPAN.

Item 71. Know the commonly used modules.

Unicode

Item 72. Use Unicode in your source code.

Item 73. Tell Perl which encoding to use.

Item 74. Specify Unicode characters by code point or name,
Item 75. Convert octet strings to character strings.

Item 76. Match Unicode characters and properties.

Item 77. Work with graphemes instead of characters.

Item 78. Be careful with Unicode in your databases.

Distributions

Item 79. Use Module : : Build as your distribution builder.
Item 80. Don’t start distributions by hand.

Item 81. Choose a good module name.

Item 82. Embed your documentation with Pod.

Item 83. Limit your distributions to the right platforms.
Item 84. Check your Pod.

Item 85. Inline code for other languages.

Item 86. Use XS for low-level interfaces and speed.

Testing

Item 87. Use prove for flexible test runs.

Item 88. Run tests only when they make sense.

Item 89. Use dependency injection to avoid special test logic.

Item 90. Don’t require more than you need to use in your methods.
Item 91. Write programs as modulinos for easy testing.

Item 92. Mock objects and interfaces to focus tests.

Item 93. Use SQLite to create test databases.

Item 94. Use Test : : Class for more structured testing.

/|

B*x

211
214
216
218
221

227
228

231
235
239
242
246
250

253
254

257
258
261
265
269
272

275
275
278
283
287
292
295
298
301

307
308

311
314
317
320
324
330
332

vi

Bx

Chapter 11

Chapter 12

Chapter 13

Appendix A

Appendix B

Item 95. Start testing at the beginning of your project.
Item 96. Measure your test coverage.

Item 97. Use CPAN Testers as your QA team.

Item 98. Set up a continuous build system.

Warnings

Item 99. Enable warnings to let Perl spot suspicious code.

[tem 100. Use lexical warnings to selectively turn on or off complaints.
Item 101. Use die to generate exceptions.

Item 102. Use Carp to get stack traces.

Item 103. Handle exceptions properly.

Item 104. Track dangerous data with taint checking.

[tem 105. Start with taint warnings for legacy code.

Databases

Item 106. Prepare your SQL statements to reuse work and save time.
Item 107. Use SQL placeholders for automatic value quoting.

Item 108. Bind return columns for faster access to data.

I[tem 109. Reuse database connections.

Miscellany

Item 110. Compile and install your own perls.

Item 111. Use Perl: : Tidy to beautify code.

Item 112. Use Perl Critic.

Item 113. Use Log: : Log4perl to record your program’s state.
Item 114. Know when arrays are modified in a loop.

Item 115. Don’t use regular expressions for comma-separated values.
Item 116. Use unpack to process columnar data.

Item 117. Use pack and unpack for data munging.

Item 118. Access the symbol table with typeglobs.

Item 119. Initialize with BEGIN; finish with END.

Item 120. Use Perl one-liners to create mini programs.

Perl Resources

Map from First to Second Edition
Books

Websites
Blogs and Podcasts
Getting Help

Index

335
342
346
348

357
358
361
364
366
370
372
375

377
377

382
384
386

391
391
394
398
403
410
412
414
416
423
425
428

435

439
435

436
437
437

445

Introduction

“Learning the fundamentals of a programming language is one thing;
learning how to design and write effective programs in that language is
something else entirely” What Scott Meyers wrote in the Introduction to
Effective C++ is just as true for Perl.

Perl is a Very High Level Language—a VHLL for the acronym-aware. It
incorporates high-level functionality like regular expressions, networking,
and process management into a context-sensitive grammar that is more
“human,” in a way, than that of other programming languages. Perl is a
better text-processing language than any other widely used computer lan-
guage, or perhaps any other computer language, period. Perl is an incred-
ibly effective scripting tool for UNIX administrators, and it is the first
choice of most UNIX CGI scripters worldwide. Perl also supports object-
oriented programming, modular software, cross-platform development,
embedding, and extensibility.

Is this book for you?

We assume that you already have some experience with Perl. If you're look-
ing to start learning Perl, you might want to wait a bit before tackling this
book. Our goal is to make you a better Perl programmer, not necessarily a
new Perl programmer.

This book isn’t a definitive reference, although we like to think that you'd
keep it on your desktop. Many of the topics we cover can be quite compli-
cated and we don’t go into every detail. We try to give you the basics of the
concepts that should satisfy most situations, but also serve as a starting
point for further research if you need more. You will still need to dive into
the Perl documentation and read some of the books we list in Appendix A.

2

Introduction

There is a lot to learn about Perl.

Once you have worked your way through an introductory book or class on
Perl, you have learned to write what Larry Wall, Perl’s creator, fondly refers
to as “baby talk.” Perl baby talk is plain, direct, and verbose. It's not bad—
you are allowed and encouraged to write Perl in whatever style works for
you.

You may reach a point where you want to move beyond plain, direct, and
verbose Perl toward something more succinct and individualistic. This
book is written for people who are setting off down that path. Effective Perl
Programming endeavors to teach you what you need to know to become a
fluent and expressive Perl programmer. This book provides several differ-
ent kinds of advice to help you on your way.

= Knowledge, or perhaps, “Perl trivia.” Many complex tasks in Perl have
been or can be reduced to extremely simple statements. A lot of learn-
ing to program effectively in Perl entails acquiring an adequate reser-
voir of experience and knowledge about the “right” ways to do things.
Once you know good solutions, you can apply them to your own
problems. Furthermore, once you know what good solutions look like,
you can invent your own and judge their “rightness” accurately.

= How to use CPAN. The Comprehensive Perl Archive Network is mod-
ern Perl’s killer feature. With over 5 gigabytes of Perl source code,
major frameworks, and interfaces to popular libraries, you can accom-
plish quite a bit with work that people have already done. CPAN
makes common tasks even easier with Perl. As with any language, your
true skill is your ability to leverage what has already been done.

= How to solve problems. You may already have good analytical or
debugging skills from your work in another programming language.
This book teaches you how to beat your problems using Perl by show-
ing you a lot of problems and their Perl solutions. It also teaches you
how to beat the problems that Perl gives you, by showing how to effi-
ciently create and improve your programs.

m Style. This book shows you idiomatic Perl style, primarily by exam-
ple. You learn to write more succinct and elegant Perl. If succinctness
isn’t your goal, you at least learn to avoid certain awkward constructs.
You also learn to evaluate your efforts and those of others.

= How to grow further. This book doesn’t cover everything you need
to know. Although we do call it a book on advanced Perl, not a whole
lot of advanced Perl can fit between its covers. A real compendium of

Introduction 3

advanced Perl would require thousands of pages. What this book is
really about is how you can make yourself an advanced Perl pro-
grammer—how you can find the resources you need to grow, how to
structure your learning and experiments, and how to recognize that
you have grown.

We intend this as a thought-provoking book. There are subtleties to many
of the examples. Anything really tricky we explain, but some other points
that are simple are not always obvious. We leave those to stand on their
own for your further reflection. Sometimes we focus on one aspect of the
example code and ignore the surrounding bits, but we try to make those
as simple as possible. Don’t be alarmed if you find yourself puzzling some-
thing out for a while. Perl is an idiosyncratic language, and in many ways
is very different from other programming languages you may have used.
Fluency and style come only through practice and reflection. While learn-
ing is hard work, it is also enjoyable and rewarding.

The world of Perl

Perl is a remarkable language. It is, in our opinion, the most successful
modular programming environment.

In fact, Perl modules are the closest things to the fabled “software ICs” (that
is, the software equivalent of integrated circuits, components that can be
used in various applications without understanding all of their inner
workings) that the software world has seen. There are many reasons for
this, one of the most important being that there is a centralized, coordi-
nated module repository, CPAN, which reduces the amount of energy
wasted on competing, incompatible implementations of functionality. See
Appendix A for more resources.

Perl has a minimal but sufficient modular and object-oriented program-
ming framework. The lack of extensive access-control features in the lan-
guage makes it possible to write code with unusual characteristics in a
natural, succinct form. It seems to be a natural law of software that the
most-useful features are also the ones that fit existing frameworks most
poorly. Perl’s skeletal approach to “rules and regulations” effectively sub-
verts this law.

Perl provides excellent cross-platform compatibility. It excels as a systems
administration tool on UNIX because it hides the differences between

