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1

Generic methodologies for
nanotechnology: classification and
fabrication

1.1 INTRODUCTION AND CLASSIFICATION

1.1.1 What is nanotechnology?

Nanotechnology is the term used to cover the design, construction and utilization of
functional structures with at least one characteristic dimension measured 1n nanometres.
Such materials and systems can be designed to exhibit novel and significantly improved
physical, chemical and biological properties, phenomena and processes as a result of the
limited size of their constituent particles or molecules. The reason for such interesting
and very useful behaviour is that when characteristic structural features are intermedi-
ate in extent between isolated atoms and bulk macroscopic materials; i.e., in the range of
about 10~°m to 107’ m (1 to 100nm), the objects may display physical attributes
substantially different from those displayed by cither atoms or bulk materials. Ultim-
ately this can lead to new technological opportunities as well as new challenges.

1.1.2 Classification of nanostructures

As we have indicated above, a reduction in the spatial dimension, or confinement of
particles or quasiparticles in a particular crystallographic direction within a structure

generally leads to changes in physical properties of the system in that direction. Hence
one classification of nanostructured materials and systems essentially depends on the

number of dimensions which lie within the nanometre range, as shown in Figure 1.1:
(a) systems confined in three dimensions, (b) systems confined in two dimensions,
(c) systems confined in one dimension.

Nanoscale Science and Technology Edited by R. W. Kelsall, I. W. Hamley and M. Geoghegan
© 2005 John Wiley & Sons, Lid



2 GENERIC METHODOLOGIES FOR NANOTECHNOLOGY

Figure 1.1 Classification of nanostructures. (a) Nanoparticles and nanopores (nanosized in
three dimensions): (i) high-resolution TEM image of magnetic iron oxide nanoparticle, (i1)
TEM 1mage of ferritin nanoparticles in a liver biopsy specimen, and (iii) high-resolution
TEM 1mage of nanoporosity in an activated carbon). (b) Nanotubes and nanofilaments
(nanosized in two dimensions): (i) TEM image of single-walled carbon nanotubes prepared
by chemical vapour deposition, (ii) TEM image of ordered block copolymer film, and (i11)
SEM image of silica nanotube formed via templating on a tartaric acid crystal. (¢) Nano-
layers and nanofilms (nanosized in one dimension): (i) TEM image of a ferroelectric thin film
on an electrode, (ii)) TEM image of cementite (carbide) layers in a carbon steel, and (111) high-
resolution TEM image of glassy grain boundary film in an alumina polycrystal. Images
courtesy of Andy Brown, Zabeada Aslam, Sarah Pan, Manoch Naksata and John Harring-
ton, IMR, Leeds

Nanoparticles and nanopores exhibit three-dimensional confinement (note that his-
torically pores below about 100 nm in dimension are often sometimes confusingly
referred to as micropores). In semiconductor terminology such systems are often called
quasi-zero dimensional, as the structure does not permit free particle motion in any
dimension.

Nanoparticles may have a random arrangement of the constituent atoms or molecules
(e.g., an amorphous or glassy material) or the individual atomic or molecular units may
be ordered into a regular, periodic crystalline structure which may not necessarily be the
same as that which is observed in a much larger system (Section 1.3.1). If crystalline, each
nanoparticle may be either a single crystal or itself composed of a number of different
crystalline regions or grains of differing crystallographic orientations (1.e., polycrystalline)
giving rise to the presence of associated grain boundaries within the nanoparticle.
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4 GENERIC METHODOLOGIES FOR NANOTECHNOLOGY

Nanoparticles may also be quasicrystalline, the atoms being packed together in an
icosahedral arrangement and showing non-crystalline symmetry characteristics. Such
quasi-crystals are generally only stable at the nanometre or, at most, the micrometre scale.

Nanoparticles may be present within another medium, such as nanometre-sized precipi-
tates in a surrounding matrix material. These nanoprecipitates will have a specific
morphology (e.g., spherical, needle-shaped or plate-shaped) and may possess certain crystal-
lographic onentation relationships with the atomic arrangement of the matrix depending on
the nature (coherency) of the interface which may lead to coherency strains in the particle and
the matrix. One such example is the case of self-assembled semiconductor quantum dots,
which form due to lattice mismatch strain relative to the surrounding layers and whose
gecometry 1s determined by the details of the strain field (Chapter 3). Another feature which
may be of importance for the overall transport properties of the composite system is the
connectivity of such nanometre-sized regions or, in the case of a nanoporous material,
nanopore connectivity.

In three dimensions we also have to consider collections of consolidated nanopar-
ticles; e.g., a nanocrystalline solid consisting of nanometre-sized crystalline grains each
in a specific crystallographic orientation. As the grain size d of the solid decreases the
proportion of atoms located at or near grain boundaries, relative to those within the
interior of a crystalline grain, scales as 1/d. This has important implications for proper-
ties in ultrafine-grained materials which will be principally controlled by interfacial
properties rather than those of the bulk.

Systems confined 1n two dimensions, or quasi-1D systems, include nanowires, nano-
rods, nanofilaments and nanotubes: again these could either be amorphous, single-
crystalline or polycrystalline (with nanometre-sized grains). The term ‘nanoropes’ is
often employed to describe bundles of nanowires or nanotubes.

Systems confined in one dimension, or quasi-2D systems, include discs or platelets,
ultrathin films on a surface and multilayered materials; the films themselves could be
amorphous, single-crystalline or nanocrystalline.

Table 1.1 gives examples of nanostructured systems which fall into each of the three
categories described above. It can be argued that self-assembled monolayers and multi
layered Langmuir—Blodgett films (Section 1.4.3.1) represent a special case in that they
represent a quasi-2D system with a further nanodimensional scale within the surface
film caused by the molecular self-organization.

1.1.3 Nanoscale architecture

Nanotechnology 18 the design, fabrication and use of nanostructured systems, and the
growing, shaping or assembling of such systems ecither mechanically, chemically or
biologically to form nanoscale architectures, systems and devices. The original vision of
Richard Feynman' was of the ‘bottom-up’ approach of fabricating materials and devices
at the atomic or molecular scale, possibly using methods of self-organization and self-
assembly of the individual building blocks. An alternative ‘top-down’ approach is the

! R. Feynman, There’s plenty of room at the bottom, Eng. Sci. 23, 22 (1960) reprinted in J. Micromech
Systems 1, 60 (1992).



