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Preface

This book introduces a methodology to numerically generate a class of invariant,
canonical, and convex polytopic representations from any quasi-linear parameter-
varying models. The class of polytopic representations is then readily executable
for linear matrix inequality-based system control design. Our intention is to devise a
standard design process that reduces analytical derivations as much as possible, echo-
ing the recent paradigm shift toward the ready acceptance of numerical solutions as a
valid form of output from control system problems. Our methodology is based on an
extended version of singular value decomposition applicable to hyper-dimensional
tensors. The resulting representations may exactly or approximately duplicate the
original dynamics. Trade-offs between approximation accuracy and computational
complexity can be performed through the singular values retained in the process. The
book also proposes to manipulate the convexity of the resulting polytopic represen-
tations as a possible way to influence the subsequent linear matrix inequality-based
design and control performance. This differs from the prevailing perspective in the
literature, which focuses mainly on the proper formulation and conditioning of lin-
ear matrix inequalities to facilitate feasible designs. On the practical side, the book
provides details about the application of the proposed methodology to design control
systems with a number of real-life examples, including the aeroelastic wing section
and the heavy vehicle rollover prevention problems. The book also introduces 7P-
tool, a MATLAB™ Toolbox which contains the relevant algorithms of the proposed
methodology. The Toolbox is available online for free downloading.

This book is not intended to be a textbook, but rather a reference book for gradu-
ate students, researchers, engineers, and practitioners who are dealing with nonlinear
systems control applications. The book will be a practical tool to systematically gen-
erate controller design for a large class of nonlinear systems, especially with the help
of the MATLAB Toolbox TPtool. More importantly, we sincerely hope that readers
will also find the book stimulating and useful as a platform upon which new concepts
and MATLAB functions may be defined and explored as needed for analyzing their
control problems and carrying out the design processes at hand.
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Chapter 1

Introduction

1.1 An overview

The book deals with two main areas of emerging importance in the field of sys-
tems and control, namely, the quasi-linear parameter-varying (qQLPV) models and
the linear matrix inequality (LMI) design method. The qLPV models efficiently treat
nonlinear plants as linear time-invariant (LTI) systems with varying parameters that
are functions of the state variables. Such formulation is applicable to a wide range
of problems, for example, in the areas of aerospace control and gain scheduling. The
LMI, on the other hand, is a very efficient computation-based method for multiobjec-
tive control system design. The integration of the two has been the subject of many
ongoing works in recent years. This book, however, deviates from past approaches
by bringing forth a number of novel concepts and perspectives.

Instead of using the given qLPV model directly, the book calls for the derivation
and utilization of its finite element tensor product (TP) type polytopic model, or TP
model for short, for design. Moreover, given that analytically deriving such represen-
tation will be a tedious or even impossible task, particularly for more complex sys-
tems, the book introduces a higher-order singular value decomposition (HOSVD)-
based computational technique to numerically generate from any given gqLPV model
a TP model that is readily executable for the LMI control design. The TP model as
generated may exactly or approximately duplicate the original dynamics, depending
on the singular values retained in the process. In turn, the singular values serve as
a measure to trade off the accuracy and complexity of the resulting model. For the
subsequent LMI design process, the book adopts the parallel distributed compensa-
tion (PDC) framework, which uses the same TP form for the controller to readily
incorporate multiple design objectives. The book also focuses on the generation of

1



2 CHAPTER 1. INTRODUCTION

advantageous TP models with proper convexity properties as a means to facilitate
controller designs. This so-called convex hull manipulation for design is a new con-
cept introduced in this book.

The book also introduces a MATLAB Toolbox called TPtool specifically devel-
oped for the present TP model generation, convexity manipulations, and LMI-based
controller design. The book also includes a number of practical examples to demon-
strate the application of the proposed computational-based modeling and design ap-
proach.

The following sections contain more detailed descriptions of the salient features
of the book.

1.2 TP model

In the Paris Conference of the International Congress of Mathematicians in 1900,
D. Hilbert gave a famous speech culminating in the publication of 23 conjectures
on unsolved problems, which he believed would provide the biggest challenge in
the 20th century. Specifically, he hypothesized in the 13th conjecture that there exist
continuous multivariable functions which cannot be decomposed as a finite super-
position of continuous functions of a lesser number of variables [GGO00], [Gra00],
[Hil00], [Kap77]. This hypothesis was disproved by Arnold in 1957 [Arn57]. In the
same year, Kolmogorov [Kol57] formulated a general representation theorem, along
with constructive proof, to express continuous multivariable functions in terms of one
dimensional functions. This proof justified the existence of universal approximators.
Kolmogorov’s representation theorem was further improved by several authors, in-
cluding Sprecher [Spr65] and Lorentz [Lor66]. With these results, it has been proved
from the 1980s that the approximation tools of biologically inspired neural networks
and genetic algorithms are all valid universal approximators, and the same is true
for the inference-based fuzzy logic mappings [BL91], [Cyb89], [HSW89], [Cas95],
[Kos92], [Wan92], [NK92], [EHR94]. As such, these approximation tools have been
widely adopted in the identification of system models. They turned out to be partic-
ularly useful for approximating systems that may not be describable by analytical
equations.

The above approximation tools thus add to the number of effective identifica-
tion techniques that we have today. However, the identified models they produced
are quite different in form and description to the usual models derived from analyt-
ically closed formulas via physical considerations of a given system. For instance,
the neural network model would be a graph with a huge numerical array of con-
nection weights, or the fuzzy logic mapping would be a set of linguistic rules. Fur-
thermore, some identification techniques would represent the model in the form of



