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Preface

The preparation of several short courses on distribution-free statisti-
cal methods for students at third and fourth year level in Australian
umversities led to the writing of this book My criteria for the courses
were, firstly, that the subject should have a clearly recognizable
underlying common thread rather than appear to be a collection of
1solated technigues Secondly, some discussion of efficiency seemed
essential, at a level where the students could appreciate the reasons for
the types of calculations that are performed, and be able actually to do
some of them. Thirdly, 1t seemed destrable to emphasize point and
interval esimation rather more strongly than 1s the case in many of
the fairly elementary books i this field

Randomization, or permutation, 1s the fundamental idea that
connects almost all of the methods discussed in this book
Application of randomization techniques to original observations, or
simple transformations of the observations, leads generally to
conditionally distribution-free inference Certain transformations,
notably ‘sign’ and ‘rank’ transformations may lead to unconditionally
distribution-free inference An attendant advantage 1s that useful
tabulations of null distributions of test statistics can be produced

In my expenience students find the notion of asymptotic relative
efficiency of testing difficult Therefore 1t seemed worthwhile to give a
rather informal introduction to the relevant 1deas and to concentrate
on the Pitman ‘efficacy’ as a measure of efficiency

Most of the inipetus to use distribution-free methods was originally
in hypothesis testing. It 1s now well recogmzed that adaptation of
some of the 1deas to point estimation can be advantageous from the
points of view of efficiency and robustness Pedagogically there are
also advantages in emphasizing estimation One of them 1s that one
can adopt the straightforward approach of defining relative efficiency
in terms of vanances of estimates Another 1s that using the notion of
an estunating equation makes 1t easy to relate the distribution-free
techmiques to methods which will have been encountered in the
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standard statistics courses Examples include the method of mo-
ments and large sample approximations to standard errors of
Lstimates

The aim of this book is to give an introduction to the distribution-
free way of thinking and sufficient detail of some standard techmques
10 be useful as a practical gusde 1¢1s not intended as a compendium of
distribution-free techniques and some readers may find that a
wehnique which they regard as important 1s not mentioned For the
most part the book deals with problems of location and location shuft
They mciude onc- and two-sample focation problems, and some
aspects of regression and of the ‘analysis of vanance’

Although some of the presentation 1s somewhat different from what
appears to have become the standard in this field, very hittle, if any, of
the material 1s original Much has been gleaned from various texts
Direct acknowledgement of my indebtedness to the authors of these
works 1s made by the hsting of general references Through these, and
other refercnces, I also acknowledge indirectly the work of other
authors whose names may not appear in the bibliography No serious
attempt has been made to attribute 1deas to their onginators Specific
references are given only where 1t 1s felt that readers may be
particularly interested in more detail

While the origins of this book are in undergraduate teaching 1 do
hope that some expenenced statisticians will find parts of 1t interest-
ing In particular, developments in point and interval estimation, and
noting of their connections with ‘robust” methods have taken place
fairly recently Some interesting pioblems of esttmating standard
errors as yet not fully resolved are touched upon in several places

Many of my colleagues have helped me, by discussion and by
reading sections of manuscript Dr D G Kildea read the first draft of
Chapter 2 and his detalled comments led to many improvements
Dr BM Brown was not only a patient listener on many occasions
but also generously pibvided Appendix A

Velbowre Nowamber 1980 JS Mantz



Contents

Preface

1 Basic concepts in distribution-free methods

11
12
13
14
15
16

1.7
18

2.1
22
23
24

Introduction

Randomuzation and exact tests

Consistency of tests

Point estimation of a single parameter
Confidence limits

Efficiency considerations in the one-parameter
case

Multiple samples and parameters

Normal approximations

One-sample location problems

Introduction

The median

Symmetric distributions

Asymmetric distributions M-estimates

3 Miscellaneous one-sample problems

31
32
33

34

Introduction

Dispersion the interquartile range

The sample distribution function and related
inference

Estimation of F when some ubservations are
censored

4 Two-sample problems

41
42
4.3
44
4.5

Types of two-sample problems

The basic randomization argument
Inference about location difference
Proportional hazards (Lehmann alternative)
Dispersion alternatives

Page ix

~ =3 AN e e

11
15

21
2]
23
28
58

61
61
61

65

73

81
81
82
83
108
117



v

Straight-line regression

51
5.2
5.3

The model and some prehminanes
Inference about § only
Joint nference about « and §

Multiple regression and general linear models

61
6.2
6.3
6.4
6.5

Introduction

Plane regression two independent vanables
General linear models

One-way analysis of vanance

Two-way analysis of variance

Bivariate problems

71
72
73
74
75
76

Introduction

Tests of correlation

One-sample location

Two-sample location problems
Three-sample location problems
Multiple-sample location problems

Appendix A

Appendix B

Bibliography

Subject index

Author index

CONTENTS

123
123

124
152

173
173
173
202
206
209

215
215
215
220
236
245
251
253
257
259
263

265



CHAPTER |

Basic concepts in distribution-free
methods

1.1 Introduction

In the broadest sense a distribution-free statistical method is one that
does not rely for its validity or its utility on any assumptions about the
form of distribution that is taken to have generated the sample values
on the basis of which inferences about the population distribution are
to be made. Obviously a method cannot be useful unless it is valid, but
the converse is not true. The terms validity and utility are used in a
semi-technical sense and relate to the usual statistical notions of
consistency and efficiency respectively. The great attractions of
distribution-frec methods are:

(i) that they are. by definition. valid under minimal assumptions
about underlying distributional forms:
(1) the aesthetic appeal of their being based for the most part on
very simple permutation or randomization ideas:
(1i1) the fact that they have very satisfactory efficiency and robust-
ness properties.

Distribution-free methods. especially the simpler ones. have gained
widespread acceptance, but they are by no means the first weaponry
of most practising statisticians. Perhaps the main impediments 1o
their even greater popularity are:

(a) the results of distribution-free tests are often not as readily
interpretable in terms of physical quantities as are the results of
parametric analysis:

(b) in some of the more complex situations severe computational
difficulties can arise; although many distribution-free methods are
"quick’ and ‘easy’ they do not all share these properties.

It should also be noted, of course. that many distribution-free
methods are relatively new; this applies particularly to the estimation
methods. Therefore they are not yet well known in the popular sense.
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This book is written for undergraduate students, as an instruction
manual in the use of some of the standard distribution-free methods,
but its main objective is to serve as an introduction to the underlying
ideas, and perhaps to stimulate further reading in the subject.
Consequently the emphasis is on randomization (or permutation) as
the underlying unifying notion in the development of testing methods,
and associated methods of estimation. These ideas are certainly not
new, and have been developed in great detail in various special
contexts. Nevertheless, the use of ‘signs’ and ‘ranks’ is still commonly
thought to characterize distribution-free methods, if not by statis-
ticians, then by very many non-professional users of statistical
methods.

The selection of topics that are treated in ensuing chapters is
influenced strongly by consideration (a) above. In fact the emphasis is
heavily on questions of location and location shift. They are not only
among the most important from the practical viewpoint, but also
represent a class of problems where it is clearly easy, and sensible, to
visualize the quantities that are subject to inference, without the need
to specify underlying distributions in close detail. This is the only
excuse offered for not including many ‘standard’ procedures, such as
runs tests, some of the tests of dispersion, general tests of distribution
functions, such as the Kolmogorov-Smirnov test.

Very few of the so-called distribution-free methods are truly
distribution-free. Many of the arguments are simplified if the
underlying distribution can be taken as continuous, and this is
commontly done. This assumption will be made throughout this book.
Other assumptions are necessary, depending on the problem. For
example, in one-sample location problems the assumption of sym-
metry plays a major role. Thus the term distribution-free must be
interpreted with some qualification. The methods are developed
without detailed parametric specification of distributions; we may
assume that a density f(x) is symmetric about 6, but need not say that
it is, for example, 1/[7{1 + (x — 6)*}]. The term ‘nonparametric’ is
preferred to ‘distribution-free’ by some, but since we are actually
trying to make inferences about parameters the latter term seems
more appropriate here.

1.2 Randomization and exact tests

Although the randomization basis of test and other methods will be
restated for specific procedures in later chapters, we shall illustrate it
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here in a simple example. This will enable us to define certain terms
rather conveniently.

Consider the well-known simple ‘paired comparison’ experiment in
which two treatments are allocated at random, one each to a pair of
subjects. The two subjects of the same pairs are chosen to be as alike
as possible. For example, in an experiment on sheep a natural pairing
would be to use twins for each pair. Suppose that the results obtained
for the ith pair are measurements y;, and y;; for the members
receiving treatments 4 and B respectively. The differential effect of the
treatments for the ith pair could now be measured by d, = y;, — yia,
withi=12,..., n

Now suppose that we are to test the null hypothesis H,, according
to which the effects of treatments A and B are identical. since our
allocation of treatments within pairs is random, correctness of H,
would mean that d, could have had the value —d; =y~ 4.
Further, if we denote by D, the random variable being the ith
difference obtained in the experiment, then

Pr(D,= +|d,|)=Pr(D,= —|d;}) =% (1.1)

The probabilities in (1.1) are conditional probabilities, the condition-
ing being on the ith pair whose difference has magnitude 4.

Since the randomization is performed independently for each pair,
it is now a simple matter to conceive the joint distribution of
D,,D,,...,D,, for the random variables D,,D;,...,D, are inde-
pendent with individual distributions given by (1.1). Again we note
that it is a conditional distribution. A natural test statistic for H, is
T=D,+D,+...+D,, and from the preceding discussion it is clear that
tabulation of the exact conditional distribution of T is a straightfor-
ward matter: the 2" possible sign combinations to be attached to the
magnitudes |d;|,i=1,2,...,n, have to be listed, and for each of these
the value of T computed. This generates 2" possible values of T
occurring with equal probabilities 2", and thus establishes the exact
conditional distribution of T. Let 7 be such that Pr(T = 7y =r/2". I we
test H against a one-sided alternative and take as critical region all
T, = t, then the size of this critical region (the level of significance}) is
exactly r/2".

A test is said to be exact if the actual significance level is exactly that
which is nominated. In our example, the test is an exact level /2" test.
Moreover, it is important to note that although the exact significance
level derives from the exact conditional distribution, the uncon-
ditional significance level is also exactly r/2" This is true simply
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because. for every possible set i, i = 1.2,...n, the probability of
rejecting Hy is r. 2"

The distribution of T under H, will uften be referred to as the null
distribution of T. In our example it is a conditional null distribution.
The test of H, is carried out by referring the observed value of T woits
conditional null distribution. The derivation of the distribution in our
example was achieved by using the randomization argument, and did
not depend on an assumption of the form of distribution that
individual v; values might follow. So. the conditional null distribution
of T does not depend on an underlying distributional assumption,
and conscquently the significance level is exact. Iree from such
an assumption.

Although the exactness of the testis not affected by its being bosen
o a conditional nuif distribution. it should be kept in imind that the
conditional distribution of T will change from sample 1o sample.
Therefore the unconditional distnbution of T will be i mixture of the
conditional distributions and its form will depend on the anderiving
distribution of |d| values. When the exact conditonal disiribation of
statistic, obtained by a randomization procedure, 1< aot invarioent
with respect to the realized sample vatues., the assocntied distribaon
free methods are said to be conditionally distribution-free.

By transformations such as rank and <ign transformations it 1
often possible to derive methods that are unconditionalh
distribution-frec from those that are conditionally distribution-free 1t
every {d,} in the example that we have been discussing is replaced by |
we obtain the weil known “sign test” and it is clear that the conditionad
distribution of § = Y 7_, sgn(D,). remains exactiy the sume for cvery
possible set of realized results.

From the point of view of exactness of significance levels, theve is no
obvious advantage in a test being uncorditionally distribution-free.
Since the distributions of test statistics can be tabulated once and for
all if they are ‘unconditionally distribution-free, there can be worth-
while computational advantaues in such tests. We shall see. also, that
there can be gains in efficiency hy astute choice of transformation.
However, our starting p~int is randomization and its natural
consequence is to produce. in the first instance, conditionally
distribution-free methods. A

Enumeration of exact null distributions can be a totally impractical
task for large sample sizes, hence it is quite common’to approximate
null distributions by some standard distributior sually a normal
distribution. and so to obtain approximate vaiues of significance
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levels Here the approximation 1s 4 mathematical convenience and
does not affect the exactness of the method 1n principle Hence such
procedures will be called ‘exact’ whether or not some mathematical
approximation 1s used for convenience However, there are circum-
stances where approximations, of essentially unknown precision,
have to be made They are usually occasioned by nuisance para-
meters, whose values, while not of direct concein do affect the null
distributions of interest

1.3 Consistency of tests

If the null hypothesis 1n the example of Section 1 2 had specified a
difference 0 between the two treatments, the d, values would have
been replaced by d4,—~6, 1=1,2, ,n, the argument otherwise
remaming the same In order to show the dependence of T on
D.,D,, ,D,andfwemaywriteit J(D,#) Taking differences of the
paired values can be regarded as reduung the problem to a one-
sample problem, and n the remainder of this section we shall be
discussing one-sample, one-parameter problems

Suppose that random sampling from a population with parameter
of interest @ produces the results X, X, X, ~where
X.,X,, .X,can be taken as independent and identically distr-
buted Let the statistic to be used i testing a hypothesis about 0 be
S(X. 1), defined such that 1ts conditional and its unconditional null
distributions have mean O «f ¢ 1s replaced by 6

Suppose that we propose to test H, =60 against H, 6=0,>0
at level a and that the test procedure 1s to reject H, if observed
S(X, 8,) > C (X, 8, The value of C4X L) 1s determined from the
randomization distribution of S(X, 6,), therefore 1t it generally depends
on X and on 0, Weshall assume that S(X, ) 15 so scaled with respect
to n that C,(X, 8,) Fo041e.m probability, as n—»

Questions of consistency have to be answered wm terms of the
behaviour of the uncondrtional distributions of the relevant statistics
and we shall assume that 1n the unconditional distnibution of S(X, ),
when 0 =0,

E{S(X,0,)18,)} = A(®,,0) > 0
var {S(X, OO)IH )} = 6%(0,,0,) n, with (8, 8,) bounded

We shall say that the test of H, agamst H | 1s consistent 1if its power can
be made arbitrarily close to 1 by increasing n
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Lemma 11 Under the assumptions given above about the distn-
bution of S(X, 1), the test of H, against H, 1s consistent

The proof of this lemma 1s obtamed simply from the assumptions by
noting that S(X, 0,) - A(8,,6,) > 0, while C,(X,8,) 50

We may be concerned with values of 8, close to 8, 1n which case 1t 1s
useful if we assume .

E{S(X. )6} = u(z, 6

with p{t.0) continuous 1n ¢ and differentiable near 0
Then we can put

AB,,0,) (0, — 0,)u(6,,8,),

noting that u(6,,6,)=0

For Lemma 11 to hold we now have to replace the earlier
assumption about E{S(X, 0,)|0,} by the assumption p'(0,6) <0

Let us reconsider the example of Section 1 2 1n two versions

W SX,y=T*D,t)=T(D,t)/n=(D;+ +D,)/n—1t, suppose,
for our illustration, that the distribution of every D, 1s normal with
mean @ and variance o2, and that 8, =0 In this case, as we shall sce,
the conditional randomization distribution of S can be taken as
approximately normal for large n, with vanance Y d?/n?1fd, ,d,,
d, are the observed differences So, with u, an appropriate normal
quantile,

CulX,80) = u (LD} /n}' 2/,
and 1t 1s easy to see that ) D?/n -2+ 62 + 62 under H, so that
C,1X,6,) 50
Further,

E{S(X, 00”01} =40, -
var {8(X,,0,)/0,} =o?%/n

note also that E{S(X,t){0} =68 —t, p(0,0)= — | The test 1s con-
sistent, 1n fact, as we shall show m Chapter 2 the test statistic can be
written as a function of the usual t-statistic whose consistency and
other properties are well known

It should be noted, however, that with certain distributions for the
D, the test may not be consistent

(1) Let S(X,#) = (1/m)."_, sgn(D, — t) and suppose that the distri-
bution function of every D, 1s F(d, 6), with denstty f(d, §), symmetric
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about § The null distribution of S has vanance 1/n, n even, and S,
being a hnear function of a binomial random vaniable, has an
approximately normal distribution
So,
C,(X,00)=u,/yn
Also
E{S(X,1)|0} = (1/n) ¥ E{sgn(D, - 1|6}
=(1/n) Y. {(— 1) PID, < t{6) + (1} P(D, > t|0)}
=1-—2F(t,0)

Therefore 4i'(6,8) = — 2f(6,0) Under H, the statistic S can again be
expressed as a binomial random vanable, hence 6*(0,, 0,) < 4, so that
the conditions of Lemma 11 are satisfied

Two points about the examples above are worth remarking upon
First we see that the quantity C,(X,60,) 1s simply a constant, that 1s
non-random, 1n case (1) Second, the only restriction on F 1s that
f16,0) # 0, so that the ‘sign’ test will be consistent in many cases where
the usual t-test 1s not

1.4 Point estimation of a single parameter

Since the statistic S(X, t) 1s defined so that E{S(X, 6)} =0, a natural
procedure for finding a point estimate of 6 1s suggested by the method
of moments, namely, to take as point estimate 0 of # the solution ¢ = 8
of the estimating equation

SX,1)=0 (12

As we shall see 1n later chapters, some of the statistics S(X, 1), regarded
as functions of ¢ for fixed X are not continuous in ¢ so that a unigue
solution of (1 2) has to be decided upon by a suitable convention An
appropriate one 1s usually obvious 1n context Weak consistency of §
1s eastly checked, in fact we have

Lemma 12-1f E{S(X,1)|6} = u(t,8) 1s continuous in ¢t and differen-
tiable near ¢ > 6, and 1f the other conditions for the applicability
of Lemma 11 hold, then § -£5 9 as n—ag .

1.5 Confidence limits

Provision of a measure of precision of an estimate. 1s an essent. .} part
of statistical inference, an1 one way of doing this 1s to give confidence
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hmits Confidence limats, or confidence sets, can be determined by the
well-known procedure of taking a pomnt § 1n the parameter space to
belong to the confidence set if the null hypothesis that =60 1s
accepted Briefly, the argument 1s as follows

To test H, 0= 0, against some alternative H |, a critical region of
size a, R(8,), 1s determined such that

PriS(X,8,)eR0,)]H,} =1 — x (13

Now, for a given X = x find the set C,(x) of all 8 such that S(x, H)e R(6)
The true value 8, will belong to C,(x) if S(x,8,)eR(0,) But the
probability of this event 15 1 — o, whatever the value of 8,, according
to our definition (1 3) The set Cy(x) 15 2 100(1 — a)°, confidence set for
6 The shape of Cy(x) 1s determimed by the shape of R(#) In the one-
parameter case that we are considering, R(6) 1s typically an mterval,
and so 1s C,(x). one- or two-sided confidence Iimits are obtained
according to whether the test 1s one- or two-sided The probability
1 — a1s sometimes called the confidence coefficient

A notable feature of the procedure outlined above 1s that only the
null distribution of S 18 needed In distribution-free methods this s
particularly useful because the null distributions are usually exact,
often very easy to obtain, and of course 1n many instances already
tabulated Moreover, whether a conditional or unconditional null
distribution 1s used the confidence coefficient 1s the value 1 —«
associated with the hypothesis test, and if the probability 1 —« 1s
exact, then so 1s the confidence coefficient We shall say that a
confidence region is exact if the confidence coefficient 1 — « 1s exact
One of the great attractions of distribution-free methods 1s that they
enable one to determine, often fairly easily, exact confidence limuts {or
certain parameters with mimmal assumptions about distributional
forms

1.6 Efficiency considerations in the one-parameter case

161 Estimation

Efficiency of estimation will be measvred 1n terms of var(t) The
relative efficiency of two estimators will be measured by the ratio of
their variances In some cases 1t wili be possible to express § fairly
simplyintermsof X, X,, , X, sothatanexactexpression for var(f)
may be given However, for the most part we shall have to deal with
cases where such a simple expression cannot be obtained. in f{act we
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may not even be able to express exphaitly intermsof X, X,, . X,
Then the best we can do 1s obtamn a large-sample approximation
formula for var(f)

To simplify notaton we shall assume in what follows that
expectation and variance are derived at the true value of the
parameter 6 Thus we put E{SX, {8} = E{S(X, )}, etc The matn
assumptions that we shall make are

(1) E{SX.0)} = ptr, ), 15 continuous 1n t and differentiable near
t=0.

(1) the statistic S(X. 1). treated as a function of ¢ for fixed X, either 1s
continuous and differentiable for t near 8, or it can be replaced by an
approximating function which has these properties,

() var!{S(X, 1)} = ¢(t, 8)n, a(t, 8) continuous 1n t and bounded

Assumption (1) 1s needed because statistics S(X, r) obtained after
rank or sign transformations are typically discontinuous step func-
tions of + However, 1t 1s also typically true of them that if they are
scaled such that E{S(X, 1)} = u(t. 0), that 15, not dependent on n, then
the number of steps increase with n, and their heights decrease The
sign statistic of example (1) in Section 1.3 1s a case 1n pont, a simple
transformation of S(X, t) 1s the sample distnibution funct:on which 1s
known to have the desired property

Now consider a small but finite neighbourhood of §. the interval
(0 —hi2,6 + hy2) with h held constant. so that we can put

{ﬁS(X,L)} SX0+h 2)-SIX,0~h 2

O
_S(l)+h 20 ~810-h2.00+0(1 \/n)
MR 2025020+ O

= pui0,0)+ O, yn)

1n view of assumpuon (1)
Write

SXon o SIX. s tt— W [0, 0)+ O /np) (4
and note that S(X,0) =0 Then we have approximately
var () = var {S(X 8}} [fE{SX 1} 1), (135

Formula (1 3), or approximate methods similar to those used m s
dertvation, occur 1n sundry standard situatione For example 1f3t i
applied to the estimating equation 1n the case of ‘regulys maximum-
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likelthood estimation, the usual large-sample variance formula for
maximum-likelithood estimators 1s obtained

A simple example 1s the following suppose that F,(x) 1s the usual
sample distribution function based on n independent observations
from a population with continuous distribution function F(x), density
f(x) and median § The estimating equation for 6 1s

SX,)=F, (t)y-1/2=0"
E{S(X, )} =Fu)—1/2
[E{S(X,1)}/t], -y = r(0)
var {S(X,0)} = 1/4n

giving the approximate formula for the vanance of the sample
median, 6,

var (0)~ 1/(4nf %(6))

Another consequence of the ‘hinearization’ represented by (1 3) 1s
that the distribution of § will be approximately normal if the
distribution of S(X, 8) 1s approximately normal Linearization 1deas
have become inportant in distribution-free methods, and a more
nigorous approach is outhined in Appendix A

162 Hypothests testing

Consider two statistics §, and S, satisfying the conditions (1), (n), (111)
given 1n Section 16 1 Suppose that we scale these two statistics so
that their null distributions have the same dispersion at a certain
value 6, of 0, that 1s, we replace S, by S,(X,1)/5,(8,,0,) = SXX,1)
and S,(X,1) by §,(X,t)/0,(0,,0,) = S%(X,t) Inspection of formula
(1 4) shows that the ratio of varniances of estimates of , based on $*
and S% 1s determined by the slopes [JE{SXX,1)}/d1], ., r=1,2
Without doing {ormal power calculations, 1t 1s clear that the power
of a test of H, =0, agamnst H, 0=0,+A A small, will be
determined largely by the slope given above associated with the
statistic S used for the test For any statistic S, the slope at 0,

es(0o) = |[CE{S* (X, 0)}/8t], - = 1 (85, 0) (05.00)  (16)

13, therefore a natural measure of its efficiency for tesung H,, against a
close alternative H, If we put A =1/,/n then eg(6,) 1s the displace-
ment of the distribution of S from its null location under H,,
standardized with respect to its standard deviation under H,,
Making the approximation a(6, + A, ;) ~ a{0,, ) and assuming



