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Foreword

The first two editions of this book had seven skillfully written chapters, organized in my mind
in three parts. Collectively, they aimed at giving the reader a coherent presentation of the the-
ory of vibrations and associated computational methods, in the context of structural analysis.
The first part covered the analytical dynamics of discrete systems, and both undamped and
damped vibrations of multiple-degree-of-freedom systems. It also served as a good introduc-
tion to the second part, which consisted of two chapters. The first one focused on the dynamics
of continuous systems and covered the subject of wave propagation in elastic media. It was
followed by a chapter which bridged this topic with the first part of the book, by introducing
the novice to the concept of displacement methods for semi-discretizing continuous systems.
It also culminated with a brief and yet well-executed initiation to the finite element method. All
this led to the third part of the book, which indulged into a concise and effective treatment of
classical numerical methods for the solution of vibration problems in both frequency and time
domains. Covering all of these topics in a unified approach, making them interesting to both
students and practitioners, including occasional references to experimental settings wherever
appropriate, and delivering all this in less than 400 pages, was a daunting challenge that the
authors had brilliantly met. For this reason, the previous editions of this book have been my
favourite educational publication on this subject matter. I have used them to teach this topic at
the MS level, first at the University of Colorado at Boulder, then at Stanford University.

So what can one expect from a third edition of this book?

In its third edition, the overall organization of this book and that of its chapters has remained
mostly unchanged. However, several enhancements have been made to its technical content.
The notion of the response of a system to a given input has been refined throughout the text, and
its connections to the concepts of dynamic reduction and substructuring (which remain timely)
have been made easier to observe, follow, and understand. Chapter 3 has gained a new section
on experimental methods for modal analysis and some associated essentials in signal pro-
cessing and system identification. The mathematical content of Chapter 6 has been somehow
refreshed, and its scope has been enhanced by two welcome enrichments. The first one is a new
section on linear equation solvers with particular emphasis on singular systems. Such systems
arise not only in many mechanical and aerospace engineering problems where the structure of
interest is only partially restrained or even unrestrained, but also as artifacts of many modern
computational methods for structural analysis and structural dynamics. The second enrichment
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brought to Chapter 6 is an updated section on the analysis of the sensitivity of frequencies and
mode shapes to parameters of interest, and its association with model updating. Most impor-
tantly, the third edition comes now with carefully designed problem sets (and occasionally
some solutions) that will certainly enhance both processes of teaching and learning. Overall,
the third edition has added about 150 pages of technical content that make it a better textbook
for students and teachers, a useful reference for practitioners, and a source of inspiration for
researchers.

Charbel Farhat
Stanford University
1 January 2014



Preface

This monograph results from a complete recasting of a book on Mechanical Vibrations,
initially written in French and published by Masson Editions in 1992 under the title Théorie
des vibrations, Application a la dynamique des structures. The first edition in English was
issued shortly after, thanks to the support of DIST (French Ministry of Scientific Research
and Space) and published by John Wiley & Sons in 1994. The book was indubitably felt
to fill a gap since both editions were a success in France as well as internationally, so that
both versions were almost immediately followed by a second edition by the same publishers:
in French in 1996, and in 1997 for the English version. Due to the short delay between
editions, only minor changes — essentially corrections — took place between the first and
second versions of the manuscript.

The numerous constructive comments received from readers — university colleagues, stu-
dents and practising engineers — during the following decade convinced both of us that a deep
revision of the original manuscript was definitely needed to meet their expectations. Of course
there were still remaining errors to be corrected — and the very last one will never be discov-
ered, error-making being a common trait of human beings — and more rigor and accuracy had
to be brought here and there in the presentation and discussion of the concepts. But the subject
of mechanical vibration has also rapidly evolved, rendering the necessity of the addition of
some new important topics. Proposed exercises to help, on the one hand, teachers explain the
quintessence of dynamics and, on the other hand, students to assimilate the concepts through
examples were also missing.

We were already planning to produce this third edition in French in the early 2000s, but
the project could never be achieved due to overwhelming professional duties for both of us.
The necessary time could finally be secured from 2010 (partly due to the retirement of the
first author). However, priority has now been given to the English language for the writing of
this third, entirely new edition since our perception was that the demand for a new, enhanced
version comes essentially from the international market. We are indebted to Editions Dunod
for having agreed to release the rights accordingly.

We are thus pleased to present to our former readers a new edition which we hope will meet
most of their expectations, and to offer our new readers a book that allows them to discover
or improve their knowledge of the fascinating world of mechanical vibration and structural
dynamics.



Xvi Preface

Without naming them explicitly, we express our gratitude to all those who have helped us
to make this book a reality. Indeed, we received from many colleagues, friends and relatives
much support, which could take various forms, such as a careful and critical reading of some
parts, the provision of some examples and figures, appropriate advice whenever needed, per-
sonal support and, not the least, the understanding of our loved ones when stealing from them
precious time to lead such a project to its very end.

Michel Géradin and Daniel J. Rixen
Miinchen
24 January 2014
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Introduction

We owe to Lord Rayleigh the formulation of the principles relative to the theory of vibration
such as they are applied and taught nowadays. In his remarkable treatise entitled Theory
of Sound and published in 1877 he introduced the fundamental concept of oscillation of a
linear system about an equilibrium configuration and showed the existence of vibration eigen-
modes and eigenfrequencies for discrete as well as for continuous systems. His work remains
valuable in many ways, even though he was concerned with acoustics rather than with struc-
tural mechanics.

Because of their constant aim to minimize the weight of flying structures, the pioneers
of aeronautics were the first structural designers who needed to get vibration and structural
dynamic problems under control. From the twenties onwards, aeronautical engineers had to
admit the importance of the mechanics of vibration for predicting the aeroelastic behaviour
of aircraft. Since then, the theory of vibration has become a significant subject in aeronautical
studies. During the next forty years, they had to limit the scope of their analysis and apply
methods that could be handled by the available computational means: the structural models
used were either analytical or resulted from a description of the structure in terms of a small
number of degrees of freedom by application of transfer or Rayleigh-Ritz techniques.

The appearance and the progressive popularization of computing hardware since 1960 have
led to a reconsideration of the entire field of analysis methods for structural dynamics: the
traditional methods have been replaced by matrix ones arising from the discretization of vari-
ational expressions. In particular, the tremendous advances in the finite element method for
setting up structural models gave rise to the development of new computational methods to
allow design engineers to cope with always increasing problem sizes.

Today, the elaboration of efficient computational models for the analysis of the dynamic
behaviour of structures has become a routine task. To give an example, Figure 1 illustrates the
computational prediction of the vibration modes of a stator section of an aircraft engine. The
fineness of the finite element model has been adapted in this case for the needs of the associ-
ated stress analysis, the latter requiring a level of detail that is not really needed for a modal
analysis. The eigenmode represented is a 3-diameter mode exhibiting a global deformation of
the structure. What makes the modal analysis of such a structure very difficult is the high level

Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition.
Michel Géradin and Daniel J. Rixen.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 1 Finite element model of a stator section of aircraft engine. Source: Reproduced with permis-
sion from Techspace Aero — SAFRAN Group.

of cyclic symmetry (resulting from the number of stator blades) which is responsible for the
appearance of a high number of nearly equal eigenvalues.

Development of computing, acquisition and sensing hardware has led to a similar revolution
in the field of experimental techniques for identification of vibrational characteristics of struc-
tures. For more than thirty years, experimental modal analysis techniques have been developed
which are based either on force appropriation or on arbitrary excitation.

The methods for dynamic analysis, whether they are numerical or experimental, have now
taken an important place everywhere in engineering. If they were rapidly accepted in dis-
ciplines such as civil engineering, mechanical design, nuclear engineering and automotive
production where they are obviously needed, they have now become equally important in
the design of any manufactured good, from the micro-electromechanical device to the large
wind turbine.

From its origin in the early sixties, the aerospace department of the University of Liege
(Belgium) has specialized mainly in structural mechanics in its education programme. This
book results from more than twenty years of lecturing on the theory of vibration to the students
of this branch. It is also based on experience gathered within the University of Li¢ge’s Lab-
oratory for Aerospace Techniques in the development of computational algorithms designed
for the dynamic analysis of structures by the finite element method and implemented in the
structural analysis code the team of the laboratory has developed since 1965, the SAMCEF™
software.!

The content of the book is based on the lecture notes developed over the years by the first
author and later formatted and augmented by one of his former students (the second author).
This work reflects the teaching and research experience of both authors. In addition to his
academic activity at the University of Liege, the first author has also spent several years as
head of the European Laboratory for Safety Assessment at the Joint Research Centre in Ispra
(Italy). The second author has accumulated until 2012 lecturing and research experience at

! From 1986, SAMCEF™ has been industrialized, maintained and distributed by SAMTECH SA, a spin-off company
of the University of Liege.



