INFORMATION
SYSTEMS
ENGINEERING

. A FORMAL APPROACH

7 »»’ b)
T |

%w! g 8

INFORMATION SYSTEMS ENGINEERING:
A FORMAL APPROACH

K. M. van HEE

NN

E2010001961

N CAMBRIDGE
@Y UNIVERSITY PRESS

1

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
Sdo Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521110648

© Cambridge University Press 1994

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1994
This digitally printed version (with corrections) 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-45514-5 Hardback
ISBN 978-0-521-11064-8 Paperback

The illustration for the cover was supplied by Annelies Schott

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

INFORMATION SYSTEMS ENGINEERING:
A FORMAL APPROACH

Preface

The term systems engineering covers a wide area of activities, focused on the
development of systems. One of these activities, called systems modeling, is the
construction of models of systems. Models are made and used by systems engi-
neers for various reasons. Sometimes a model is used to document the function-
ality of a system, i.e. the model describes the behavior of a system in an abstract
way. For instance this is done in requirements engineering, in case it concerns a
new system, or in reverse engineering, if an old one has to be renovated. In both
cases the model is used as a specification of the system.

A model can also be used as a blueprint of a system that has to be constructed.
In this case the description is less abstract than a specification in the sense that it
should be easy to map the building blocks of the model onto existing or realizable
components.

A third reason to make a model is to analyze a system, for instance performance
or reliability. If the system already exists one could in principle observe its
behavior. However, it is often not feasible to experiment with a real system, due
to the costs or the risks of experimentation. If the system under consideration is
new, i.e. it exists only on paper and in the minds of some persons, a model is the
only way to study its behavior. Instead of experimenting with the real system
the systems engineer may perform experiments with a model.

In many cases it is possible to analyze the models in a formal way, instead of
analysis based on experiments. This has the advantage that we are able to prove
theorems for the behavior of a system, while experiments allow us only statistical
assertions to make and may serve as counter-examples for hypotheses.

The models we consider here are abstract or mathematical rather than physical.
Often we transform these models into a form appropriate for interpretation by
a computer. In that case the computer can simulate the behavior of the system
and experimentation is then called computer simulation.

vii

viii Preface

Models are expressed with formalisms. A formalism consists of a mathematical
framework and a language. A model is an instance of a framework. A model is
described in the language, which might be textual or graphical. A description
of a model in the language is called a script. So the semantics of a script is a
model.

The formalisms we use apply to all systems that have a countable set of states
and that make state transitions at discrete moments. We call these systems:
transition systems. A very important type of system is called information system,
in which the state is formed by a set of information objects. The scope of this
book is however wider than computer science, and includes systems studied in
industrial engineering and electrical engineering as well.

Most books on the development of information systems are focused on the tech-
niques used in practice today. The formalisms they use to make models of systems
are very weak. Often data flow diagrams and entity-relationship diagrams are the
only “formalisms” offered. On the other hand these books pay a lot of attention
to interview techniques, cost-benefit analysis and planning techniques. In this
book we do not consider these topics at all, not because they are unimportant
for the systems engineer but because there are already enough books on them.

In this book we concentrate on modeling of systems and therefore we need
some formalisms to describe the models. Many formalisms consider only aspects
of transition systems; for instance data models to define state spaces of systems,
process models to define the interaction between different components of systems
and so-called specification languages to define local state transitions or opera-
tions. (Note that data models and process models are in fact formalisms for
defining models rather than models themselves.) It turns out to be very difficult
to integrate these different views of a system. Therefore we provide a small set of
formalisms here and we show how they may be combined to obtain an integrated
model of a system. We do not provide a detailed survey of all existing formalisms
here, but select a few and extend them a little in order to be able to integrate
them.

The frameworks we will use are:

— transition systems,
— a binary data model with complex objects,
— timed and colored Petri nets.

The languages we use are:

— a specification language very close to Z,
— graphical languages for defining data models and Petri nets.

The transition systems (in fact unlabeled transition systems) provide the highest

Preface ix

level of semantics: every model denotes a transition system. A transition system
has an event set and a function, called transition law, that assigns to a (finite)
sequence of events a set of possible subsequent events. An event is a pair con-
sisting of a state and a time point, which denotes the time the system moved to
the state.

The data model is used to define state spaces of systems. The data model is
a binary version of the entity-relationship model with two extensions: there are
more facilities for expressing constraints and there is a notion of aggregation of
entities and relationships into so-called complez objects. In fact a state is a set
of complex objects.

The transition law of a system is defined by (timed and colored) Petri nets. In
a Petri net we have places in which complex objects may reside and PTOCESSOTS
that may consume and produce complex objects from specific places. (In the
Petri net literature processors are called transitions and the complex objects are
called tokens.) Each processor has an input-output relation, which determines its
consumption/production behavior. The time component of the formalism enables
us to model real-time aspects of systems.

The specification language is a language based on typed set theory with a con-
structive subset, that is, a typed functional language, which is very close to Z.
In fact it is a subset of Z, because we have restricted ourselves to a countable
universe of values that can be represented by finite sets. Functions map values
to values. Functions are in general infinite sets, so they are not considered to be
values themselves, which implies that we do not allow function-valued functions.
These restrictions do not impede the modeling of systems in practice, and make
the theoretical treatment more easy; we present a construction for the language,
including static type checking and evaluation of expressions. The constructive
subset of the specification language is important because we advocate a style of
modeling that is adopted from VDM, in which the systems engineer first gives
a descriptive specification of an entity and afterwards a construction in a con-
structive subset of the language. So, we distinguish descriptive and constructive
specifications. (Often it is possible to give a construction that is easy to under-
stand at once, so that a descriptive specification is no longer useful.) Our subset
of Z has very few primitive functions, which means that most functions used in
specifications, are themselves constructed in the language. Of course the language
is extendible in the sense that new primitive types and functions can be added.
Our syntax differs from Z on minor points, mainly where we use \-expressions.
In Z the X symbol is used for function definitions. However, in practice that is
not always a convenient notation. (Most functional languages use more familiar
ways for expressing function constructions.)

X Preface

The specification language is used to define the types of the complex objects
that flow through the Petri net and the input-output relations of the processors
in the Petri net. An important language construct is a schema. (A schema
denotes a subset of a labeled Cartesian product.) Schemas are defined using types,
functions and predicates. The complex objects and the input-output relations are
defined by schemas. The language also has schema operators to define complex
schemas using already defined simpler schemas. Another difference between our
specification language and Z is that we allow partial schemas, i.e. schemas in
which not all variables or attributes must have a value. This is particularly
important for the specification of processors that do not consume from all their
input places and that do not produce output for all their output places.

Constructive specifications are useful because they are ezecutable, which is
important when a systems engineer needs to validate a model by means of sim-
ulation experiments. For information systems a computer model is a prototype
that can be tested by potential users of the modeled system.

Graphical languages are used to define the structure of the Petri nets and parts
of the data model. In these languages descriptions are in fact graphs, in which
the vertices represent object classes, processors or places and in which the edges
represent relationships between object classes or connections between processors
and places. The graphical language for the data modeling is close to the usual
ones. In the Petri net language we have introduced hierarchy, which makes it
possible to decompose models in a way similar to data flow diagrams. This is
a useful feature because data flow diagrams are very often used in practice and
systems engineers who have experience with data flow diagrams, can use them in
our formalism in almost the same way.

Our choice of formalisms is rather arbitrary. A combination of a process al-
gebra, an algebraic specification language and another data model could have
worked also. However, we have the experience that so-called model-based for-
malisms, such as we have chosen, are more comfortable with practitioners than
property-based formalisms, such as the algebraic ones.

The author is leader of a research group at the Eindhoven University of Tech-
nology that has developed a software tool called ExSpect. This tool incorporates
most of the formalisms introduced in this book and is commercial available by
Bakkenist Management Consultants, Amsterdam. The tool has been operational
since 1989. It is used by several industrial companies for a variety of applications,
such as the modeling and analysis of logistical systems and the prototyping of
distributed software systems. (It is also used by software houses in the ESPRIT
project EP-5342 called PROOFS.) These experiences have motivated my deci-
sion to write this book. The chosen combination of formalisms is useful. It is

Preface xi

not necessary to use ExSpect to apply the theory of this book in practice. There
are other tools on the market that support our approach as well. The use of a
tool is recommended for large systems or if simulation or prototyping is needed.
Each tool has its own peculiarities and requires some learning time. Note that
our approach is not dependent on any tool however, there are tools that support
it.

The book is divided into five parts. The first, called Concepts, introduces most
of the concepts a systems engineer needs for modeling systems. The treatment is
as informal as possible in order to give the reader an intuitive understanding of
these concepts, which are illustrated with realistic examples.

In the second part, called Frameworks, the formalization of these concepts is
given as well as the more theoretical details of the frameworks used. This part
is interesting for experts; the frameworks are complex and it may take some
time to understand them fully. If we expect systems engineers to make formal
specifications then they have to understand the formalisms they use! However it is
possible to understand many details of later parts of the book without knowledge
of this part.

In the third part, called Modeling methods, we give a collection of methods
for constructing models. These methods, all illustrated with practical examples,
are actor modeling, concerning the modeling of (extended) Petri nets and object
modeling, which is also called data modeling. We conclude this part with a chap-
ter on object oriented modeling, which is a mixture of actor and object modeling.
The modeling methods cover ones for constructing models after reality as well
as others for transforming models from one formalism into another. The model-
ing methods are treated mostly in an informal way, using examples, in order to
facilitate the readability.

Actor models and object models are “glued together” with the specification of
types for complex objects and processor relations. Here we need the specification
language that is introduced in part I and treated in detail in part V.

In part IV, called Analysis methods, we consider several methods for analyzing
a model. They cover invariant methods and occurrence graph methods of Petri
nets, methods for verifying time constraints and simulation methods for validating
models by experimentation.

In part V, called Specification language, we define the Z-like specification lan-
guage. The construction of the language is interesting in itself. Because function
construction plays an important role in specifications, this topic is treated exten-
sively. Therefore this part of the book can also be considered as an introduction
to functional programming.

xii Preface

Each part concludes with an annotated bibliography and a set of exercises.
Answers to the exercises are available from the author.

The book ends with three appendices on mathematical notions, the syntax of
the specification language and a toolkit of useful functions.

The book is intended for advanced undergraduate and graduate students in
computer science, electrical engineering and, industrial engineering as well as for
professional systems engineers. The author is convinced that tommorow’s systems
engineers need an education in formal methods to model systems than is offered
in most university courses to day. The only way to cope with the complexity
of large systems is to make precise and concise models (of parts) of the systems
under consideration. This book offers the foundations for such education.

Prerequisites of the book are: a good understanding of (naive) set theory
and predicate calculus. Some experience in functional programming and some
knowledge of Petri nets and data bases is useful but not necessary. For a more
practical course the instructor could summarize part II and skip part V. Since
there are three views presented in the book (the data base view, the Petri net
view and the formal specifications view) instructors may decide to emphasize one
of these perspectives in a course.

The whole book can be taught in about sixty hours. A course that covers only
parts I, II and III can be taught in about forty hours. Exercises with a tool like
ExSpect are very useful.

The book will also be of interest for researchers in the areas of formal spec-
ifications and systems modeling, in particular the methods part contains many
challenges for future research.

Acknowledgements

The main part of the book is written while I was on a sabbatical leave at the
University of Waterloo, Ontario. I thank John Ophel and Farhad Mavaddat from
the Computer Science Department of this University and the students of course
CS757 (1992) for many useful comments. Furthermore I wish to express my grat-
itude to Jan Paredaens (University of Antwerp) for several helpful comments.

The book is the result of the research and software development of the ExSpect
group at the Eindhoven University of Technology. I thank them all for their
contributions, but in particular Wil van der Aalst, Lou Somers, Peter Verkoulen
and Marc Voorhoeve.

The research of the ExSpect group was supported by the ESPRIT program
(EP-5342) and the TASTE project of the Netherlands organization for applied
scientific research, TNO. Therefore I am grateful to the European Commission

Preface xiii

and TNO as well as the Eindhoven University of Technology for granting me a
sabbatical leave.

Last but not least I thank Jane Pullin and Jeroen Schuyt for a large part of
the text editing, and Susan Parkinson for excellent copy editing.

Kees M. van Hee,

Eindhoven University of Technology,
e-mail: wsinhee@win.tue.nl

1993

Contents

Preface page vii
Part I: System concepts 1
1 Introduction 3
2 Application domains 7
3 Transition systems 16
4 Objects 26
5 Actors 40
6 Specification language 57
6.1 Values, types and functions 57
6.2 Value and function construction 63
6.3 Predicates 66
6.4 Schemas and scripts 67
7 References and exercises for part I 71
Part I1: Frameworks 7
8 Introduction 79
9 Transition systems framework 81
10 Object framework 89
11 Actor framework 98
12 References and exercises for part II 120
Part II1: Modeling methods 125
13 Introduction 127
14 Actor modeling 131
14.1 Making an actor model after reality 131
14.2 Characteristic modeling problems 143
14.3 Structured networks 161
14.4 Net transformations 167
15 Object modeling 173
15.1 Making an object model after reality 176
15.2 Characteristic modeling problems 189

vi Contents

15.3 Transformations to other object frameworks 203
16 Object oriented modeling 218
17 References and exercises for part 111 228
Part IV: Analysis methods 233
18 Introduction 236
19 Invariants 237
19.1 Place invariants 241
19.2 Computational aspects 256
19.3 Transition invariants 264
20 Occurrence graph 268
21 Time analysis 276
22 Simulation 289
23 References and exercises for part IV 299
Part V: Specification language 303
24 Introduction 3056
25 Semantic concepts 308
25.1 Values and types 308
25.2 Functions 317
26 Constructive part of the language 321
27 Declarative part of the language 336
27.1 Predicates and function declarations 336
27.2 Schemas and scripts 339
28 Methods for function construction 345
28.1 Correctness of recursive constructions 345
28.2 Derivation of recursive constructions 351
29 Specification methods 368
29.1 Value types for complex classes 358
29.2 Specification of processors 364
30 References and exercises for part V 371
Glossary 374
Appendix A Mathematical notions 391
Appendixz B Syntax summary 396
Appendix C Toolkit 400
Bibliography 410

Index 417

Part 1

System concepts

1

Introduction

Engineering is the scientific discipline focussed on the creation of new artifacts
designed to be of some use to our society. Such artifacts range from buildings
to software and from screws to airplanes. Different types of artifacts require dif-
ferent engineering approaches; therefore there exist many engineering disciplines.
However, in all these disciplines the development of a new artifact is divided into
stages. Three stages can always be recognized in some form, although the ter-
minology may differ between disciplines or even between schools within the same
discipline. These stages are as follows.

Analysis, which involves:

— evaluation of the existing artifact (if any) that is to be replaced or
improved and of the environment in which the artifact should fulfill its
tasks,

— specification of the requirements the artifact has to fulfill for its envi-
ronment.

Design, which involves the creation of two models:

— the functional model, also called the specification, which describes the
behavior of the artifact in an abstract way;

— the construction model, also called the blueprint, which models the
artifact in terms of existing components and materials from which the
artifact is to be constructed.

The design stage also involves verification that the functional model sat-

isfies the requirements specified in the analysis and that the construction

model has the functionality described in the functional model.
Realization, which involves:

— construction of the artifact (or a prototype) according to the construc-
tion model,

4 I System concepts

— testing the constructed artifact with respect to the functional model.

These three stages concern the development of an artifact; however the life cycle
of an artifact involves further stages. If it is a mass product, there are two
additional stages.

Production, in which copies of the realized artifact are produced (note that
often the production process itself has to be designed first).

Distribution, in which the copies are brought to the environment where they
are wanted, often via market mechanisms.

These stages do not occur if the artifact is a unique product. Whether or not the
latter is the case, the following stages belong to the life cycle.

Introduction of (a copy of) the artifact in the environment where it will be
used.

Maintenance of the artifact to keep it working or to adapt it to new require-
ments.

In the present book we only consider the first two stages of the development
process. We focus our attention on a specific type of artifact, called a discrete
dynamic system. Such a system consists of active components or actors that
consume and produce passive components or tokens. Many complex artifacts in
our world can be considered as discrete dynamic systems. Three subtypes will
be studied in more detail:

— business systems (such as a factory or restaurant);
— information systems (whether automated or not);

— automated systems (systems that are controlled by an automated information
system).

The first subtype is studied by industrial engineers, the third by software engi-
neers and electrical engineers, whereas the second is a battlefield for all three
disciplines. We hope that our approach suits these disciplines; we call their union
systems engineering. The types of discrete dynamic systems on which we focus
our attention are described in the next chapter.

During the analysis and design stages of the development process for discrete
dynamic systems the systems engineer is working with models of these systems.
A model is in fact another system, but one that is easier to analyze or observe
than the original system. But the model has so much similarity to the original
system (in certain aspects at least), that conclusions drawn from the model are
assumed to be valid for the original system as well.

