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To my parents



Preface

Many times I would find myself wondering how people choose what to doin their professional
lives. After giving years of work to experimental virology, and some more to botany, microbial
genetics, and teaching biological sciences, I settled at a research career in computational biol-
ogy. And all this time, I was interested as much in biology as in the different ways in which peo-
ple think about their research. How do we decide which problem to study? Why do some
scientific questions sound interesting and important, and others donot? And why do different
people have different opinions on what is interesting and important?

I noticed that much of what turns out to be interesting and important—in science and else-
where—happens when two seemingly unrelated things suddenly reveal some sort of similarity.
The pleasure of such discovery, of course, is only comparable to the joy of finding a difference
between two things that were previously thought to be the same. Thus, I realized that I am
interested in similarities and differences, and in patterns and motifs. And if thisis what you are
after, then computational biology is a good line of work.

As a “local bioinformatics specialist” at my institute, I spend a lot of time talking to the
“noncomputational” biologists. My colleagues often tell me that they are more interested in
ways to think about science than in actual applications and protocols. Remarks such as “I have
read about database search statistics, and I think I understand how this algorithm works—but
tell me how you decide which of these weak sequence similarities are more important than the
others!” are common. So, it seems that the myriads of bioinformatics texts that are published
these days need a reader’s companion, which talks about prejudices, preferences, and
priorities.

This is my attempt on such a companion. It is not intended as a comprehensive source on
genome comparisons or other issues of computational biology. I wrote mostly about things
that are of interest to me: For example, most of this book is concerned with the protein world,
and there is almost no discussion of nucleotide sequence analysis. Thereis also very little math-
ematics, statistics, or computer science in the book, even though the practice of bioinformat-
ics requires dealing with models, equations, and algorithms. Rather, this book is about
scientificideas that I believe to be the most important in computational biology and in its most
accomplished branch, comparative genomics. I am also trying to show that the era of com-
pletely sequenced genomes is a truly novel age of biology, and that comparative genomicsis the
science for this age.

This book would not be possible without collaboration, friendship, and, throughout the
years, many conversations with Eugene Koonin and Alexey Kondrashov. Luna Han, my edi-
tor, helped me to define where this book should be going and gently persuaded me to stay on
track, and the members of the Bioinformatics Center at the Stowers Institute for Medical
Research held the fort all the while.

Most important, my family put up with everything. I thank my wife Irina Sorokina—all the
good things in my life for so many years are because of you, my love—and my children
Alexandra, Nikolai, and Natalia.
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The Beginning of
Computational Genomics

Historians of science may disagree about when computational evolutionary genomics
started in earnest. Some may associate the starting point with the work of geneticists Alfred
Sturtevant and Theodosius Dobzhansky or statistician Sir Ronald Fisher. Others may say that
genomics is incomplete without the molecular-level analysisand mark the beginning of theera
with the following citation from Francis Crick (1958):

Biologists should realize that before long we shall have a subject which might be called “protein tax-
onomy”—the study of amino acids sequences of proteins of an organism and the comparison of them
between species. It can be argued that these sequences are the most delicate expression possible of the
phenotype of an organism and that vast amounts of evolutionary information may be hidden away
from them.

However, I believe that most people would agree that several papers published from 1962 to
1965 by Linus Pauling and Emile Zuckerkandl were extremely important. One article in
particular, “Molecules as Documents of Evolutionary History” (Zuckerkandl and Pauling,
1965), set the scene for most of the future work that is described in this book. The circum-
stances of its publication are also of some interest: Although written in 1963, it first appeared
in 1964 as a Russian translation in a monograph dedicated to Alexandr Ivanovich Oparin,
a true pioneer of experimental study of abiotic protein synthesis (Oparin, 1953) who, sadly, also
endorsed and helped enforce Lysenkoist pseudo-science during his service at the Soviet
Academy of Sciences from the 1940s to 1960s (Lewontin and Levins, 1976; Jukes, 1997).

The research first announced in that unlikely place (the original English language version of
Zuckerkandl and Pauling’s paper followed in 1965) sounds prophetic. If we outline the main
ideas of that work, the density of novel ideas in that 10-page article is staggering:

1. The authors use the root “semantics” 72 times when speaking of genes and gene
products. They called DNA, RNA, and proteins “semantides,” or sense-carrying units.
Unlike some of the modern uses of this word, which essentially equates semantics with
postmodern relativism (e.g., “let us discuss the substance and not argue about semantics”),
Pauling and Zuckerkandl took semantics seriously. So should we: By definition (and as
understood by their readers in the early 1960s), semantics is the study of the meaning of
sense-carrying units in a language or in other code. The meaning of words—and of genes—
is exactly what we want to know.

2. There are dissimilarities between even closely related sense-carrying molecules.
These dissimilarities are produced by genetic processes, such as nucleotide substitutions,

1



2 Foundations of Comparative Genomics

insertions, deletions, and rearrangements of large DNA fragments. Sense, or meaning, of
genes and their products may be extracted by comparing related molecules, detecting the dif-
ferences between them, and computing something about these differences.

3. Biopolymers contain information about evolution. It is threefold: (1) the time of
existence of the ancestral molecule,(2) what the sequence was, and(3) the line of descent from
the ancestor to each of the contemporary molecules.

4. Some sense-carrying units carry less sense than others. For example, simple biopolymers,
build by repetition of a few blocks (nucleotides or amino acids), may not be a good source of
information about complex evolutionary processes.

5. Changes in biopolymers may be of different types. Some of the changes are beneficial
and favored by selection, whereas others have no phenotype and are “cryptic polymorphisms.”
One reason why some genetic changes have no phenotype is the degeneracy of genetic code:
The same amino acid can be coded by different combinations of nucleotides. Another reason is
degeneracy of protein sequence with regard to the three-dimensional structure and, ultimately,
to the protein function: The same structure and function can be achieved by different combi-
nations of amino acids. Analysis of these different solutions to the same problem may result in
a better understanding of the relationships between genotype and phenotype.

6. Gene mutations and duplications of whole genes may put some genes into a “dormant”
state. [t is plausible that dormant genes may be reactivated after they accumulate changes, and
this reactivation may be an important source of evolutionary novelty.

7. Sequences outside the protein-coding regions may have a regulatory function and may
evolve differently than in the coding regions. Other noncoding regions may have no function,
and mutations in these regions will be free of selection.

8. Chemical compounds may be synthesized by more than one biochemical pathway. Thus,
functional convergence at the molecular level is expected, both at the level of the pathways and
at thelevel of individual biochemical reactions.

Thus, the authors cast evolutionary molecular biology as information science and thought
that particular attention should be given to distinguishing signals from noise in the sense-
carrying units. Biologists, chemists, engineers, mathematicians, and computer scientists who
work on in genome analysis today are in fact implementing the research program that,
unbeknownst to some of them, was started by Zuckerkandl and Pauling.

This book is no exception. Nearly every chapter addresses an issue that can be traced back
to an idea set forth in Zuckerkandl and Pauling’s seminal paper. Chapters 2 and 3 discuss
practical approaches to sequence comparison (point 2 as outlined previously). Evolutionary
inferences from these comparisons (point 3) and the relationship between signal and noise in
sequence comparison (point 4) are discussed in nearly every chapter. The issues of functional
convergence (point 8) are of centralimportance in Chapters 6, 7,and 9. Cryptic polymorphism
(point 5) is discussed in Chapters 9 and 10 in connection with sequence—structure—function
degeneracy. Finally, “what the ancestors were” (point 3) is the central theme of Chapters
11-13. Even Chapter 14, which deals with genome-wide numerical data, draws inspiration
from approaches to comparative sequence analysis foreseen by Pauling and Zuckerkandl.

The techniques of biological sequence comparison were not discussed at any length in
“Molecules as Documents of Evolutionary History,” but the central goal of finding pairs of
similar sequence fragments was stated very clearly.

Sequence similarity lies at the heart of all biology, not just comparative genomics. The
following statement has even been called “the first fact of biological sequence analysis” by Dan
Gusfield (1997) at the University of California at Davis:

In biomolecular sequences high sequence similarity usually implies significant functional or struc-
tural similarity.



The Beginning of Computational Genomics 3

This “first fact” may qualify as one of the most fundamental facts of our understanding of life.
Most biologists, however, would not hesitate to add the following:

In biomolecular sequences, high sequence similarity also usually implies evolutionary relationship.

The two statements, though similar in form, are actually distinct, and in a quite fundamen-
tal way. The structure of a biological molecule, such as a protein, is something that can be
physically defined. If we have a pure sample of this protein, a quiet place for growing crystals,
and a synchrotron beamline, we can determine a structure of a protein molecule, at least in
principle. Technical details aside, the same equipment would generally do the job for all
proteins. Indeed, as I write this, the challenges of high-throughput protein structure
determination are being met by the structural genomics projects (Chandonia and Brenner,
2006). Function, however, is not a physical characteristic but, rather, a description of some
process, so function can be defined only in a biological context. At the bare minimum, function
of a protein involves interactions with other molecules, which have to be identified and
included in the description of function. Often, in order to define the biological function of a
sequence, we need to monitor the interactions of many components in a cellular extract, in the
whole cell, in a living organism, or in an ecosystem of which this organism is a part. As the
protein function is performed, its structure may change. Thus, when we casually say “structure
and function,” in fact we are talking about many different things already. And the fact that
sequence similarity can be used to make inferences about all those different properties of a
sense-carrying unit—from physical properties of the molecule to its relationships with its
environment—is not at all trivial. The “second fact” is also nontrivial: Unlike more or less
directly observable structural and functional properties, the common ancestor of two mole-
cules cannot be directly observed (with the exception of rare cases in which the ancestral DNA
or protein have survived in ancient proteins or in biopsies), and yet we do not hesitate to infer
such an ancestor from the sequence similarity.

Thus, on the basis of sequence similarity, we make conclusions about (1) similar structure,
(2) similar function, and (3) common ancestry. These inferences are at the heart of
computational biology; most biologists make them every day, and almost every theme in this
book is based on such inferences. But how do we make them in practice?

At first glance, the statements about structure and function seem to follow from sequence
similarity quite naturally. And without doubt, these statements are amenable to direct
experimental corroboration. But in fact, structural and functional inference is inseparable
from evolutionary inference. Indeed, when comparing sequences of two biopolymers, our
path from sequence similarity to the conclusion about structural or functional similarity is
never direct. Instead, we always infer common ancestry of these sequences first, and only from
there can we proceed to making structural and functional inferences. This logic is not obvious
when the similarity is very high, but if the two sequences are more distantly related to each
other (as is the case with most sequence comparisons today), this chain of thought becomes
explicit. Indeed, we measure similarity between sequences and immediately use statistics
to compare the observed similarity with what would be expected by chance (discussed in
Chapter 2). If the similarity is too high to occur by chance, this is usually sufficient for making
predictions about protein function (discussed in Chapters 5-8) and structure (see Chapter 9).
But the only reason why such reasoning works is because the only way for nonrandom
sequence similarity to occur is by descent from a common ancestor of the two sequences. This
is the homology inference (see Chapter 3). Thus, the inference of evolutionary relationship,
which seems to be the least observable of all, turns out to be a prerequisite of proposing other,
directly observable, relationships, such as similarity of structure and function.

Consider the alignment of three sequences, A’, A”, and A"’ (here and elsewhere in this
book, I use capital letters in regular font to indicate genes and italicized capitals to indicate
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species in which these genes are found). Suppose that three sequences come from three
different species, one from each, and only the function of A”has been studied. Suppose that A’
and A” are almost identical, and the third sequence, A", is less similar but still quite close to A”
and A”. Do we use the same information to infer common ancestry and common function of
all these sequences? It seems that we do not really need every amino acid residue that is
conserved between A’ and A” to determine that they share a common ancestor; for example,
we may not care about the sites conserved exclusively between A" and A” because we do not
need these residues in order to recognize similarity between A” and more distantly related A”’,
as well as between A” and A””. On the other hand, when we are making the inference, “closely
related A’ and A” are more likely to have the same function, but a more distant A”” may have
different function,” we, in effect, are using the information about the sites conserved
exclusively between A’ and A” but not between each of them and A”’. Thus, evolutionary,
structural, and functional information is intertwined in sequence in subtle ways.

The reverse of the “first fact of sequence analysis” is not true: Functionally similar proteins
do not have to have similar sequences, and proteins with similar structures also may have
dissimilar sequences (this is discussed in much more detail in Chapters 6 and 9). Neither is the
reverse of the “second fact” true: There may be an evolutionary connection between two
sequences, but, if these sequences have diverged too far, the sequence similarity between them
may not be discernible from the random-level similarity (this is discussed in more detail in
Chapter 2). Note that in the case of the “reverse-second” fact, we are dealing with a
relationship that still exists, even if the sequence similarity has already blended with the noise.
The “reverse-first” fact, however, is more dramatic. Functionally similar proteins may have
had lost sequence similarity, but, on the other hand, they may have never shared sequence sim-
ilarity but converged to the same function from completely different, evolutionarily unrelated
sequences. This principle applies to structures as well: Similarity of structures in the absence of
sequence similarity may represent either extreme divergence of initially similar sequences or
convergence of sequences that were not similar in the first place (discussed in Chapters 6, 9,
and 10). Distinguishing between divergence and convergence at the molecular level is one of
the most important problems of computational biology.

All these considerations are different facets of the mostimportant postulate of Pauling and
Zuckerkandl: Biopolymers contain information about their evolution, structure, and
function, and these three types of signals may interact in different ways, sometimes enhancing
andin other cases interfering with each other. In a sense, whole biology for the past few decades
has been dominated by the quest for ways to extract and analyze signals contained in
molecular sequences. Genomics is a continuation of these efforts for our times, when complete
genetic makeups of many species are known. At the same time, genomics offers even more.
Many times in this book, I will return to the argument that with complete genome sequences,
we can answer many questions that we could not answer, or even could not think of asking,
before. This is the new era in biology—the era of complete genomes.

Sequences of genes, genomes, and proteins are not the only kinds of data that are of interest
to genomics. New technologies allow us to collect information about the occurrence and
spatial organization of genes and regulatory sequences; the concentration of different
molecules in cells, organs, and biological samples (measurement of mRNA levels, collected
with the help of gene expression arrays, is the most famous, but by no means unique, example
of this class of data); cellular morphology and physiological responses; and so on. This infor-
mation often takes the form of rows and columns of numbers. It may seem that Zuckerkandl
and Pauling did not have much to say about these data, which were not in the form of sense-
carrying units anyway. But in Chapter 14, I argue that the analysis of these genomewide
measurements also owes a lot to our experience in sequence comparison.
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Finding Sequence
Similarities

As discussed in Chapter 1, Pauling and Zuckerkandl in their seminal work outlined the
research program of studying the complicated ways in which structural, functional, and evo-
lutionary information is convoluted within a molecular sequence. It was clear to them that the
comparison of sequences is a clue to uncovering all these types of information. Paraphrasing
the famous quote from Theodosius Dobzhansky (1973), almost nothing in computational
biology makes any sense except in light of sequence comparison.

Before the deciphering of genetic code and the advent of DNA cloning, the most common
order of business in protein science was to isolate a protein, study its biological properties, and
only then, motivated by its biological importance, attempt to sequence this protein using
rather inefficient methods of direct peptide sequencing. The accumulation of novel protein
sequences in those times was slow and deliberate. Even when methods of DNA cloning and
sequencing came about in the late 1970s, they were applied mostly to one protein at a time, also
guided by biological interest in the gene or its product or, in many cases, by the ease with which
a gene could be isolated. Thus, proteins and mRNAs that were abundant or homogeneous,
such as cytochrome C homologs, immunoglobulins, or virus capsid proteins, were studied at
the sequence level much earlier than other families of proteins. And the biological, biochemi-
cal, and other properties of proteins usually were quite well studied by the time the sequence
was determined.

But what about evolutionary relationships—how can we infer the common ancestry of the
“sense-carrying units” without knowing their sequences? In fact, we can do it just fine in
many cases. For example, the favorite subjects of comparative evolutionary biochemistry for
most of the 20th century were globins, the main protein constituents of vertebrate red blood
cells. Years of work in the lab have shown similarity of many physicochemical and biological
properties of globins. At the same time, the anatomical, histological, and biochemical simi-
larity of most components of vertebrate blood and circulatory systems was demonstrated.
Altogether, this was the overwhelming evidence of common origin of globin genes and their
protein products. In this context, sequencing of globins could be perceived more as a confir-
mation of the phylogenetic hypothesis than a way of proposing their common origin in the
first place. Here again, Pauling and Zukerkandl were ahead of their time when they empha-
sized that sequences of biopolymers are the real foundation for comparing all of their other
properties, and that phylogenetic hypotheses may be put forward on the basis of sequence
analysis alone, before inferring other shared properties of genes and proteins. This is a
dramatic shift in the way we look at genetic information.



6 Foundations of Comparative Genomics

Pauling and Zuckerkandl did not discuss at any length how exactly we should compare
sequences and how to measure the strength of signals that this comparison may provide. This
was an algorithmic problem in the area of pattern matching, and solving it required the help of
mathematicians, computational scientists, and statisticians.

Sequence comparison, particularly the crucial role played in it by one class of algorithms,
namely dynamic programming, is discussed in almost every book on computational biology
and bioinformatics. David Sankoff was one of the most important figures in the field, and
reviewed the early work in a short, vivid paper (Sankoff, 2000). Other reviews can be found in
Mount (2004), which is also one of the most detailed introductions to the mechanics of data-
base search and sequence alignments, and in Jones and Pevzner (2004). Succinct primers on
dynamic programming and other basic elements of sequence analysis (e.g., substitution
matrices and hidden Markov models) can be found in notes by Sean Eddy (2004a-2004d), a
thorough review of combinatorial and algorithmic aspects of sequence analysis is provided in
Gusfield (1997), and the best introduction to the probabilistic aspects of the same is the book
by Durbin et al. (1998). Finally, the redoubtable family of BLAST programs has been thor-
oughly covered in a corpus of work by Steven Altschul (Karlin and Altschul, 1990; Altschul,
1991; Altschul and Gish, 1996; Schaffer et al., 2001; Altschul et al., 1990, 2001, 2005). Newer
programs suitable for the era of complete genome sequencing, assembly, and multigenome
alignment are discussed in Miller (2001), Kent and Haussler (2001), Schwartz ez al. (2003),
Blanchette et al. (2004), and Ovcharenko et al. (2005).

My goal in this chapter is not to repeat what is written in these excellent books and articles.
Rather, I present five challenges of biological sequence analysis that receive relatively little
attention but can make a major difference in sequence analysis, and I try to show how some of
the well-known sequence comparison approaches address these challenges. In dealing with
these concerns, I mostly talk about protein molecules, which, of course, are sequences of
amino acid characters drawn, in the first approximation, from the 20-letter alphabet. I only
briefly mention comparison of nucleotide sequences, which consist of four nucleotide charac-
ters, and other types of comparisons, such as comparison of gene orders in different genomes,
when the alphabet may include hundreds or thousands of characters.

Challenge 1. The methods of sequence alignment are often classified into “local” or “global”
methods, or, more accurately, into methods that produce local or global alignments. (In
a global alignment, each character is forced to be aligned with something, and in a local
alignment some characters are not considered. Many special cases of alignment can be
given more rigorous definition; Gusfield, 1997.) In one sense, this distinction is important
because statistics of local alignments is well-defined, which is not the case for global align-
ments (Altschul, 2006). In a different sense, this distinction is a red herring because the goal
of comparative sequence analysis is really not “to construct an alignment.” Rather, the
objective is to find evolutionary, functional, and structural signals in biological sense-car-
rying units—the signals that, as discussed in Chapter 1, are revealed by sequence similarity.
Thus, algorithms may be set up to produce either local or global alignment, whereas in fact
the most important question is whether the similarity between sequences is global or local.

Challenge 2. Each method of sequence alignment tries to find an extremum of some value,
such as the minimal number of operations required to convert one sequence into another or
the maximal matching score (which is most commonly sought and which will mostly con-
cern us in this chapter). This solves an optimization problem but may not do much to solve
a biological problem (i.e., to find signals in sense-carrying units). Biological knowledge
enters into the picture by way of the scoring function, which is the way of measuring simi-
larities/differences between sequences. For example, if we thought that 4 amino acid
residues represented by vowels of the Latin alphabet (A, E, I, and Y) are less important in
proteins than the other 16 residues, and decided to only consider matches between the latter
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16, any alignment algorithm would work with such a scoring system without complain—
even though theideais absurd on its face. Allimprovements in sensitivity of sequence analy-
sis are in fact the improvements in measuring similarity between sequences—from less
sensitive to more sensitive substitution matrices and then to probabilistic models of multi-
ple sequence alignments. The theory of similarity/distance between sense-carrying units,
however, is in its infancy, notwithstanding some important insights (see Altschul, 1991;
Zharkikh, 1994).

Challenge 3. Sequence alignment algorithms, even when provided with good scoring schemes,
will align any strings of allowed symbols and produce the highest scoring match between
any two sequences, whether they contain biological signals or not. But these algorithms will
not tell whether this highest match is “high enough” to indicate the presence of a signal we
arelooking for. To pick out matches that represent biologically important signals, one needs
a statistical theory that evaluates alignments and compares them to some kind of a stan-
dard. Such theory is available in an exact form for ungapped alignments (Karlin and
Altschul, 1990; Altschul, 2006) and in an approximate, yet apparently quite accurate, form
for alignments with gaps (Mott, 2000). But even with this theory in hand, and with good
scoring schemes, there are many alignments that remain in the “twilight zone” of borderline
statistical significance and cannot be directly used to infer the presence of a biological sig-
nal. The problem of how to validate (or reject) the alignments in the twilight zone is still not
fully solved.

Challenge 4. Related to challenges 2 and 3 is the problem of nontransitivity of sequence simi-
larity scores. The simplest way to state nontransitivity is for the case of three sequences:
If sequences A and B can be matched (aligned) with a high score, and sequences Band Ccan
also be matched with a high score, this does not tell us anything about the score between
A and C. That score can also be high according to our statistical theory or it can be low—so
low as to be indistinguishable from the noise. In the context of the database searches, most
matches indistinguishable from the noise are not reported to the investigator, so we may not
know about similarity between A and C unless we first know about similarity between A and
B. Of course, we can increase sensitivity of sequence comparison, for example, by replacing
a single-sequence query by a probabilistic model of a protein family to which this sequence
belongs or by aligning two family models instead of two representative sequences. This will
pull some of the twilight zone similarities into the high-similarity zone (i.e., some
“sequences C” will become directly linked to A), but other sequences and sequence
families may remain low scoring with regard to some query A yet pass the significance
threshold with a query B that itself is high scoring with regard to A. This nontransitivity
problem is not fully solved in any method of sequence comparison.

Challenge 5. Any textbook on bioinformatics will discuss differences between pairwise align-
ments and multiple alignments. It is important to know what these differences are: For
example, some of the theory that is worked out in considerable detail for the case of two
sequences cannot be easily generalized to multiple alignments, and some alignment meth-
ods that have acceptable speed of execution on two sequences are computationally prohibi-
tive when many sequences are involved. But there is another distinction, which is sometimes
overlooked; this distinction is between different types of pairwise alignments. Indeed, we
may use methods of pairwise alignment as a tool for discovering similarity that was not
known before, but we also can apply alignment methods to study similarity between
sequences that are already known to be related. The first type of pairwise alignment, in prin-
ciple, does not have to be biologically optimal: Arguably, it has to score just high enough to
stand out from the background. At the same time, this “type I” alignment has to be arrived
at with high efficiency, because discovery of sequence similarity is typically done in
the context of database searches, in which a query sequence is matched to all, or at



