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Foreword

This book aims at covering the foundations of high accuracy computing methods within
the framework of Computational Fluid Dynamics (CFD) in an era of rapidly developing
and evolving hardware and software.

From the hardware point of view, huge parallel machines with tens of thousands cores
are installed at national facilities and research laboratories giving the practioners of sci-
entific computing tools that they could not have dreamt of a decade ago. The advent of
Graphical Processing Units (GPUs) also modifies the course of CFD as everyone tries to
strain the computational tools to their last bits and extracts the highest speed-up. This is
not surprising as one of the unsolved problems in classical physics is the understanding
and control of turbulence in nature and technological applications.

From the software viewpoint, the advent of commercial packages including mesh gen-
erators, solvers and graphics tools, provide the numericists with appealing users interfaces
and deliver numerical results for extremely different and various problems involving com-
plicated geometries, peculiar boundary conditions and complex physics to be captured.
This has had a major impact on the CFD community.

A question that is often raised consists in asking “Why should we not use the simplest
schemes and run them on millions (billions) of processors?” The problem as we will dis-
cover rapidly is that simple schemes are very often too naive and lead to numerical disaster.
We cannot assume that our intellectual indolence will be compensated by the computer’s
power. At the end of the day, a bad method will produce inconsistent and poor results.

The book is clearly oriented to the application of finite differences (FD), although Chap-
ter 12 presents a long introduction to finite volume and finite element methods. FD meth-
ods are simple, easy to implement and test, and allow deep analysis, as we will observe. It
is by all means an unavoidable step among the numerical methods as FD is prone to simple
but profound analysis of numerical phenomena like numerical dissipation and dispersion.
Scientific computing is a serious and most elaborate subject where the unexperienced nu-
mericist must fear the many dangers that lurk in the jungle of numerical methods. This
book will definitely help to circumvent the traps and pitfalls where our candid behaviour
might bring our fall in the computer’s oubliette hidden in some remote memory. Let us
recall that Jean Bernoulli, Newton, Leibniz and L'Hospital already used FDs in the calcula-
tion of the brachistochrone. Therefore they deserve a new presentation as this monograph
intends to propose.

Chapter one sets the scene of the numerical landscape at the beginning of this century.
High performance computing (HPC) with all the armada of simulation softwares and pack-
ages is giving the scientist and engineer an efficient way to understand complicated phys-
ical phenomena and the ability of taking them into account in the design process.

Chapter two gives the basic equations in fluid mechanics, both for incompressible and
compressible fluids. However, the numerical methods will essentially address incompress-
ible fluid flow applications through the set of Navier-Stokes equations. Compressible flows
require by themselves a full monograph as, for example, the presence of discontinuities like
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shocks bring extra difficulties. The various formulations are presented like the primitive
variables, velocity and pressure, the vorticity-vector potential, or the possibility of solving
a Poisson pressure equation. Boundary and initial conditions are treated and explained.

Chapter three is of mathematical flavour as it studies the classification of quasi-linear
partial differential equations. This analysis is a necessa: v condition in the sequel to distin-
guish the very nature of each problem with the associated intrinsic properties that derive
consequently. The choice of the discretization methods is linked to the mathematical nature
of the problem at hand.

Chapter four introduces waves and space-time dependence in CFD. This chapter is very
important as Prof. Sengupta mentions: “If you are unable to solve accurately a one- dimen-
sional (1D) convection (or convection dominated) problem, it is hopeless that you will be
able to solve with precision the full Navier-Stokes equations”. This is a chapter that de-
parts from classical CFD books. The concept of wave equation is developed with special
cases like plane waves or surface gravity waves. Then the notion of group velocity is de-
scribed and applied to several problems. The Rayleigh-Taylor problem is afterwards inves-
tigated and the shallow water equations are proposed. The chapter ends with very useful
considerations about spatial resolution of turbulent flows. Is direct numerical simulation
(DNS) efficient and sulfficient to resolve those problems? The question of temporal scales
is tackled for turbulent flows. Time-averages and fully transient flows are also questioned.
Reynolds-averaged Navier-Stokes (RANS) equations are evoked as well as unsteady RANS
(URANS). Finally, large eddy simulations (LES) constitute the state-of-the-art of turbulent
flow simulations as they separate the dynamics of the gross structures with respect to the
subgrid scales that are modelled.

Chapter five is devoted to spatial and temporal discretizations. The methodology relies
on classical developments like Taylor series and the FD operators. The time integrators
cover single and multiple step methods. Special attention is paid to Runge-Kutta methods.

Chapter six treats the parabolic equations with the heat equation as the model. Explicit
and implicit schemes are described and studied for stability and consistency. Stability con-
ditions of explicit methods are given. A truncation error analysis yields the order of the
method. Stability, consistency and convergence are all linked through the Lax equivalence
theorem.

Chapter seven summarizes the basic knowledge of numerical linear algebra. Starting
with the Jacobi and Gauss-Seidel method, the following sections offer successive over-
relaxation, alternating direction implicit (ADI) methods, fractional step methods. Conver-
gence of the iterative procedures is carried out by the careful inspection of the iteration
matrix and the associated spectral radius. The chapter ends with the multigrid technique,
which is the optimal algorithm in terms of convergence and computational complexity.

Chapter eight is central to the book and addresses the solution of hyperbolic equations.
The book relies heavily on Prof. Sengupta’s expertise of this problem and on the many
contributions he made to this important topic. The model is the 1D convection equation
with a constant advection speed. Explicit and implicit time schemes are applied to the
problem. The Courant number shows up. For an explicit treatment the stability condition
imposes the Courant number to be equal or less than one. As a first non-linear problem,
the inviscid Burgers equation is integrated by a predictor-corrector method due to Mac-
Cormack. The dispersion error analysis involves resorting to Fourier transforms in space.
Time discretization is performed by standard schemes like Euler first order or Runge-Kutta
methods. This leads to the numerical amplification factor that in principle should be one.
A dynamic equation is eventually obtained for the numerical error with all the possible
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sources. The chapter closes with the description of two new phenomena that destroy the
accuracy through dispersion error: focussing and caustics. As a final conclusion, the reader
is warned that despite the classical assumption that error and signal follow the same dy-
namics, the new analysis shows that the speed of propagation of the computed signal is
the numerical group velocity and the numerical phase speed is different from the physical
phase speed.

Curvilinear coordinates and grid generation are the central themes of Chapter nine. The
goal is to obtain a mesh that is body-conforming in order to deal with the complex ge-
ometries without any loss of the geometrical details. Body-fitted coordinates are used for
that purpose. This task is more than ancillary work. The accuracy of the numerical results
depends strongly on the grid quality. Extremely helpful examples with various airfoils are
described in detail. Overset grid techniques and chimera approach are also illustrated. The
problem of the flow behind a circular cylinder is solved with a single grid and an overset
grid. The comparison of the numerical result for a Reynolds number equal to 100 is carried
out using proper orthogonal decomposition (POD) applied to the vortex shedding. The
advantages and drawbacks of each type of mesh are discussed at length.

Chapter ten entitled “Spectral analysis of numerical schemes and aliasing error” is again
full of novelties brought forward by Professor Sengupta and his research group. The Laplace-
Fourier transform is the tool of investigation. Spectral analysis is performed for various
spatial discretizations including central and upwind schemes. The essence of compact
schemes is introduced and this procedure leads to high accurate approximations. The time
discretization is then taken into account through one- and multi-step schemes. The end
of the chapter treats the aliasing error that is always present when using high accurate
methods. Filtering is one way to solve the problem.

More theory is given for compact schemes in Chapter 11. Optimized discretizations are
built up and applied to the previous 1D convection equation. Symmetrized and combined
compact schemes are investigated. Channel flow problems and lid-driven cavity are used
as test benches. In particular in the cavity problem results show vorticity patterns with a
triangular core shape. This is a consequence of the accuracy reached by compact schemes.

The finite volume and finite element methods form the topics presented in chapter 12.
They are both using a “weak” formulation where Green’s theorems have been used. Stan-
dard methods like QUICK and MUSCL are obtained and tested. The finite element ap-
proach relies on the Galerkin method. The Petrov-Galerkin (PG) formulation allows for
upwinding the test functions. The streamline upwind PG (SUPG) scheme is designed to
solve multi-dimensional schemes by following locally the direction of the streamlines.

In chapter 13, the Navier-Stokes equations are solved in the vorticity- streamfunction
formulation. Then the MAC method is described with the use of the staggered mesh for
velocity components and pressure. A velocity-vorticity approach is also considered. The
lid-driven cavity flow serves as a benchmark problem.

The fourteenth and final chapter presents recent material based on filters and applied to
LES or detached eddy simulations. Dispersion relation preserving (DRP) schemes are used
throughout the chapter and applied to various problems: airfoils, cavities, cylinders, etc.

The book is very complete and may be used in an introductory course with the first chap-
ters as the textbook. It may also be used at the undergraduate level and at the very begin-
ning of the doctoral school with the last seven chapters as the CFD cornerstone. The book
is timely as we enter a new paradigm in HPC, where the demand is obviously high quality
numerical results and high-fidelity simulations. Richard Hamming in the introduction of
his 1962 book Numerical Methods for Scientists and Engineers gives the motto "The purpose
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of computing is insight, not numbers’. We could rephrase it in 2013, as 'The purpose of
computing is insight and prediction through accurate numbers’. Behind numbers is hid-
den the question of the design and choice of the models, but this is another issue.

The reader will discover many exciting topics in this beautifully written account on nu-
merical approximations of partial differential equations coming from fluid flow problems.
I highly recommend Professor Sengupta’s book as an inspiring source of high quality, high
accuracy numerics that will give us the tools of achieving perfection and satisfaction in
our never ending quest for excellence...and as Aristotle said ‘Excellence is an art that needs
constant effort’.

M. Deville

Emeritus EPFL Professor
Lausanne, Switzerland
January 23, 2013



Preface

Scientific theories by design, are always vulnerable to destruction just like a species, subjected
to environmental pressure and is subjected to extinction ... Even when scientific theories fail
to survive ... their evolutionary progeny carry the best “genes”— the ideas that still work —
of the previous theory intact. — Hans Pagel

There are many new developments in scientific computing, in its application to fluid
flows and wave phenomena, which warrant their consolidation in a single source, cover-
ing some of the key developments. I have been convinced by many students and peers
that there is a definitive need for a single source book which deals with topics covered
here. I would like to acknowledge their inspiration. My main motivation in writing this
manuscript is to communicate something new and powerful as opposed to conventional
derivatives of products churned out by existing schools of thought.

However, this book also provides general introduction to computational fluid dynamics
(CFD), using well tested classical methods of solving partial differential equations (PDEs)
for the sake of completeness. These are to be found in Chaps. 1 to 9 and 13, but re-interpreted
using the spectral analysis method introduced in Chaps. 4, 8 and 10. This provides an unity
of approach in understanding numerical methods for parabolic, elliptic and hyperbolic
PDEs. The spectral analysis tool has been refined in recent years by the author’s group,
with which disparate methods can be easily compared.

This spectral analysis enables one, as shown in Chap. 8, that celebrated von Neumann
analysis is actually flawed, in which it is assumed that for a linear dynamical system the
error and signal follow the same dynamics. While this appeals to anyone as logical in an
intuitive framework, the correct error analysis shows that this is indeed a false assump-
tion when viewed for the numerical solution of the one-dimensional convection equation,
which is an ideal model equation for non-dissipative, non-dispersive system. A correct er-
ror analysis for this equation shows that numerical schemes must be neutrally stable and
dispersion error-free to provide high accuracy solution. The error dynamics is noted to
be distinctly different from the signal for this simple model equation. One of the singular
achievement of this analysis is identification of the correct numerical dispersion relation,
which in turn has enabled the creation of a general spectral theory of analysis of numeri-
cal methods over the full domain for any discrete computations. Such analysis can also be
done for linear shallow water equation, as an example for dispersive dynamic system and
that also shows different error dynamics from signal behaviour.

In proposing the new error analysis through a simple one-dimensional convection equa-
tion, we follow the Scottish philosopher, David Hume's logic about fallibility of method of
induction in knowledge creation by the theory of black swan (No amount of observation of
white swans can allow the inference that all swans are white, but the observation of a single black
swan is sufficient to refute the conclusion). While the white swan of von Neumann analysis was



xviii Preface

a mere assumption related to behaviour of linear systems, the one-dimensional convection
equation is the black swan which negates the assumption of identical dynamics of signal
and error for linear systems.

To understand numerical wave properties and related physical concepts, one can use
Chaps. 4, 8, 10, 11, 12 and 14 after familiarizing oneself with discretization methods in
Chap. 5. Chapter 9 introduces readers to governing equations in curvilinear co-ordinate
systems and grid generation with emphasis on orthogonal grid generation, which can be
used with chimera grid technique in solving complex geometry problems which involve
multiply connected computing domain. Our emphasis in this regard is simply from the
point of view of obtaining higher accuracy. Although, we admit that chimera method itself
is a work in progress. Spectral analysis also allows one to compare finite volume and finite
element methods with any other methods, as described in Chap. 12. Practitioners in these
areas emphasize that they are capable of solving practical and complex problems and their
tools should be immune to scrutiny, other than truncation error analysis. We have other
ideas and results about it in Chap. 12. In Chap. 13, various formulations of Navier-Stokes
equation using different methods have been studied, which have been described in previ-
ous chapters.

The other aspect of the present book is to develop computational methods in their abil-
ity for direct numerical simulation (DNS) and large eddy simulation (LES). Nearly two
thirds of the book addresses in detail, issues of high precision computing in Chaps. 4, 8
to 14. Studying dispersion properties from physical and numerical perspective requires
understanding wave properties — an absolute necessity to compute physically unstable,
transitional and turbulent flows. A common misperception exists among many users of
DNS who not only modify the governing differential equations, but they do not check for
the essential numerical properties of the basic methods used in their code. It is quite com-
mon to note that the basic method remains numerically unstable, which is controlled by
adding hyperviscosity! The present book strongly discourages this practise.

Accuracy and precision of numerical methods are more important than the order of
the method, which is emphasized time and again in the book, with the associated concepts
originating from spectral analysis, in terms of wave propagation properties and its applica-
tion to DNS and LES. Development of DNS and ever growing activities of LES for practical
applications have convinced us that wave mechanics is central to such activities. Spectral
analysis of model 1D convection equation for correct error propagation equation in Chap.
8 forms the foundation of DNS for convection dominated flows and wave propagation
phenomena.

This error and dispersion analysis require considering spatial and temporal discretiza-
tion together, which is the foundation of dispersion relation preserving (DRP) schemes.
The basic analysis in Chap. 8 is method independent and leads to identifying the correct
numerical dispersion relation vis-a-vis physical dispersion relation. This must be supple-
mented by explaining aliasing error (Chap. 10) to develop high accuracy compact schemes
described in Chaps. 11 and 12, for finite difference and finite volume methods, respectively.
Absolute control of flow simulation for DNS also requires understanding implicit Padé fil-
ters applied in adaptive manner (Chap. 14) and how these exclude spurious numerical
waves (g-waves) without compromising accuracy. These are the core elements of the sec-
ond part of the book, which can be used in an advanced course on scientific computing
related to fluid flows and wave phenomena, by using materials in Chaps. 2, 4, 8 to 14.

No special attempts have been made to deal with compressible flows in the book, for
two reasons. First, there are excellent books and monographs dealing specifically with this
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topic. Secondly, if computing is performed with high accuracy avoiding problems of cap-
turing discontinuities, then there is no need to develop special methods for compressible
flows specifically. This is also related to developing DRP scheme, as capturing discontinu-
ity implies faithful reproduction of all scales which propagate at the correct speed without
numerical dispersion.

It is my solemn duty to declare my debts of gratitude to pioneers in the field, whose ideas
have been expanded to obtain new developments in a single book. In research there are two
classes of noteworthy initiatives. In one class, researchers try to provide the ‘first word” by
initiating new ideas and in the other class, attempts are made to provide the ‘last word” on
a topic. The present book uses both these tracks to present concisely, classical and recent
developments. I have benefited immensely from many colleagues and students who have
read early drafts of various chapters and provided insightful comments. I would specially
like to acknowledge Prof. Michel Deville, who read a portion of the book and provided
many valuable suggestions. This book has benefited tremendously from three students:
Yogesl: Bhumkar, Swagata Bhaumik and Manoj Rajput who created many new figures for
the manuscript. Without their support, this effort would be much poorer and my heartfelt
gratitude is expressed here. I am also deeply indebted to V. V. S. N. Vijay and A. Dipankar
for reading many chapters, correcting errors and providing suggestions. I also would like
to sincerely acknowledge help provided by my other students (past and present) in provid-
ing figures and materials used in the book. I specifically thank M. T. Nair, Gaurav Ganeri-
wal, A. Dipankar, Sarthok Sircar, S. B. Talla, K. Venkatasubbaiah, V. Lakshmanan, V. V.S. N.
Vijay, Kuldeep Singh Lonkar, Amrita Mittal, V. K. Suman, S. Unnikrishnan, N. A. Sreejith
and S. Usman.

I would specifically like to acknowledge debts of gratitude to my collaborators: Profs.
Rainer Friedrich, Holger Foysi, Pierre Saguat, Wilhelm Schneider and Emmanuel Lehriche
and Klaus Jurgen Bathe. Last but not the least, it is indeed a pleasure to acknowledge the
inspiration and support from Prof. Michel Deville.

While I have been busy with work, my family provided an ideal environment at home.
and their unstinting support and encouragement made this a labour of love. Their un-
derstanding and support during the formative stage of this manuscript was very vital. I
specifically like to acknowledge the sacrifices they had to make, so that I could work un-
hindered despite many odds. My wife, Soma and our adorable children, Soumyo and Aditi,
to whom I dedicate this work.

[ must also record my sincere appreciation for all the work done for manuscript prepa-
ration by Ms. Baby Gaur and Ms. Shashi Shukla, many times over to meet changing needs.
Ms. Gaur has typed most of the text, prepared figures and spent endless hours, outside
the call of duty in preparing the manuscript. Without the dedication and devotion to work
shown by all involved, this book would not be in the present form. Finally, I wish to also
acknowledge Cambridge University Press for publishing this work. With all wonderful
help obtained from many, I humbly assume responsibilities for all mistakes in this book
and welcome suggestions for correcting these, as well as invite any other critique.
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