ESMERRESRARRFER RS IR ESHEAR

Haskell
RN EBEEM

Haskell: The Craft of Functional Programming
(Third Edition)

(5& 3Chie)

(%) Simon Thompson

-

(111 D éa*

e

I NS

(TP-6354.0101)

FHBE I

FHEE—FEFRFMHaskel EHXBFIRITONE, EEHRANET
ERABFRITHELRS. KEFBFNRER. FUNEHELFR. G228
FHGE. STNENEY. BOBAMIRNEMLBE. FIREOEREZ
AFEE. MAMHNEFLE, XWSAERATE, REBEXE, HR
WERAR, WHEAHSENE. PPESXENXGNIE, FTEEFUR. B
FIERfEERE, HE5F. 2HEFTH, NEFHEEXBFRITEE
BREE. LiRFIHaskell§y %S FHRN.

FHAESTENRFNABEXEZRNEERFNE, HAREDHM,
SN ERREFRTRMBUEFR. RGIRASSEES.

HASKELL
famm

EMERRFESHARRFEB R

B ERIRER (FIAR) B ERKRES ST i R P R 158 (ETRR)
B ZH58TERIR(ELR) W OEEAFIEIER (B4R

B ESAESEEPHOREER(EIR) B ESHEETHARESEES EXR)

B OEEE R W D RLSRBFEHER (RKAR)

B AATE LR (F2hR) W RIS H R S (AR, TAR)

R AEE— AR, BREM B EREHFER (B2, AR

B ARFHEE——RIT. BREGR B OpenCL& #2357 (ETHR)

B AESEX——RiR. BESXR(EXRR) W Haskel @852 20 (3R, 2 2HR)

For sale and distribution in the People's Republic of China www.sciencep.com
exclusively (except Taiwan, Hong Kong SAR and Macau SAR). raom. STES A Ty
WRTFHEARLMER N (AEHTEEE. RITHENTHREMN
HEREHX) HERT. -
ERREARSH

9%787030%379375%

B Z#iE: 010-64009602 PEARSON

E-mail: it@mail.sciencep.com

HESREY . HENES, BREH WWW.pearson.com = # 129,00 5

soynmeanneeny HaSKell 5 £ 4 18 B il 35 (o=

ﬂﬁﬂ#zﬂ.ﬁ Haskell: The Craft of Functional Programming (third edition

(9& SChit)

IME BB F ERARRFE £ 5

Haskell &5 #1342 E Al oo
(%3 50)

Haskell: The Craft of Functional Programming
(Third Edition)

(%) Simon Thompson

4 7 8 M

1t =

E=: 01-2013-1143

AEE N

AR —EIEH MR Haskell BB F BRI RIAITTE, ZERRN AR ECURRF BT
MREARES . A FIRERS . RBEFE X W REFIRE. SENEB R
ARG RS R . 5 B SR AR AR N A AL T Ry
SR, AREERARA, MR EEEAR, B EENE. B e RERAEEIRCIE,
HERFIR. BN EERE, LY. SBEFHE, MERRREREFET
HEWMEZLE, HEEX Haskell % 3 RBIHEA .

AFAER T EHR R AR R E R R ER AR . FIFUERER, ol fExT s
KBEF RO ERMBIRRF R R TRITESEE].

Original edition, entitled HASKELL: THE CRAFT OF FUNCTIONAL PROGRAMMING, 3E,
9780201882957 by SIMON THOMPSON, published by Pearson Education Limited, Copyright ©
Pearson Education Limited 2011.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
retrieval system, without permission from Pearson Education Limited.

China edition published by PEARSON EDUCATION ASIA LTD., and CHINA SCIENCE
PUBLISHING & MEDIA LTD. (SCIENCE PRESS) Copyright © 2013.

This edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macau SAR). ZRRAPRAE P4 N RIMESA (FEEFE. ®ITRHITBXM G EHX)
HENAAT.

2 F3 3} i W54 Pearson Education (¥ AE#(E tHIREER]) WOLRIth#R%E. TArEE AAHE.

BB /% B (CIP) #iE

Haskell B ¥\ 4n 23R = Haskell: the craft of functional programming : 28 3 fz : €3¢ / (3%)
Wk (Thompson, S.) #. —dbxi: RHEEHMAL, 2013

(H/ME BREE S EARNFE R

ISBN 978-7-03-037937-5

[. QH- 1. ©%-- 1. ORF-FEFFRt-323C V. OTP311.1

o [i 4 B 4508 CIP Hidfi % 7(2013) 28 136037 5
TR REA / TERs O adk T K/ HEiRe RAER

4 4 & B B HR
JHOR IR 65
HEECERES < 100717
http: // www.sciencep.com

& o ¥ A A 18K 122 8 BRI
RREMBAERAT SHOE s R
*
013FE7HE — R FFA: 787X1092 1/16

2013 & 7 A3 —IKENKI Efgk: 373/4
FH¥: 600 000

Effr: 129.00 7T
U ENe & 1) 8, AL F iR

Preface

Computer technology changes with frightening speed; the fundamentals, however,
remain remarkably static. The architecture of the standard computer is hardly changed
from the machines which were built half a century ago, even though their size and power
are incomparably different from those of today.

In programming, modern ideas like object-orientation have taken decades to move
from the research environment into the commercial mainstream. In this light, a functional
language like Haskell is a relative youngster, but one with a growing influence to play,
particular as we move to multicore chips as the norm in all kinds of computing device.
So, why is it a good idea to learn a functional programming language like Haskell?

Functional languages are used to build secure, error-free, systems that are used
in practice by thousands of people every day. For example, the Xmonad window
manager for linux systems (xmonad. org) is written entirely in Haskell, and the
Cryptol language (www.cryptol.net), used to design cryptographic systems in
C and VHDL, is itself implemented using Haskell.

Functional languages are general purpose programming languages, but also pro-
vide the ideal toolkit for building Domain Specific Languages (DSLs) which
give users in a particular application area — such as hardware design or financial
modelling — a language particularly suited to their needs.

Functional languages provide a laboratory in which the crucial ideas of modern
programming are presented in the clearest possible way. This accounts for their
widespread use in teaching computing science and also for their influence on the
design of other languages. A case in point is the design of generics in Java, which
are directly modelled on polymorphism in Haskell.

Functional languages help you think about programming in a different way from
Java, C#, C++ and so forth: even if you are never going to write any large pro-
grams in Haskell, what you have learned will make you a better Java, C# or C++
programmer, because you can see a bigger space of possibilities for writing your
code.

Finally, it may well be that you will find yourself working with a functional lan-
guage after all, even if it is not Haskell. Microsoft now provide the F# functional

viii PREFACE

language as a standard part of their Visual Studio suite, and this is in increasing
use in a number of sectors, particularly finance. Erlang, the concurrent functional
language, is used to provide scalable infrastructure for many web-based systems,
including Facebook chat and other services from Amazon and Yahoo!

This book provides a tutorial introduction to functional programming in Haskell. The
remainder of the preface begins with a brief explanation of functional programming,
Haskell and GHCi, and continues by describing the intended audience for the book.
To give a sense of how the book differs from others in the area we then summarise its
distinctive points before giving a chapter-by-chapter summary of its contents. We then
summarise how this edition differs from earlier ones, look at how the book can be read,
and conclude by presenting a summary of the case studies it contains.

What is functional programming?

Functional programming offers a high-level view of programming, giving its users a
variety of features which help them to build elegant yet powerful and general libraries of
functions. Central to functional programming is the idea of a function, which computes
a result that depends on the values of its inputs.

An example of the power and generality of the language is the map function, which is
used to transform every element of a list of objects in a specified way. For example, map
can be used to double all the numbers in a sequence of numbers or to invert the colours
in each picture appearing in a list of pictures.

The elegance of functional programming is a consequence of the way that functions
are defined: an equation is used to say what the value of a function is on an arbitrary input.
A simple illustration is the function addDouble which adds two integers and doubles
their sum. Its definition is

addDouble x y = 2*(x+y)

where x and y are the inputs and 2* (x+y) is the result.
The model of functional programming is simple and clean: to work out the value of
an expression like

3 + addDouble 4 5

the equations which define the functions involved in the expression are used, so

3 + addDouble 4 5
~s 3+ 2%(4+5)

~» 3 + 2%9

~ 3 + 18

~ 21

This is how a computer would work out the value of the expression, but it is also
possible to do exactly the same calculation using pencil and paper, making transparent
the implementation mechanism.

PREFACE ix

It is also possible to discuss how the programs behave in general. In the case of
addDouble we can use the fact that x+y and y+x are equal for all numbers x and y
to conclude that addDouble x y and addDouble y x are equal for all x and y. A
property like this can be tested against random data, or indeed we can formally prove
something like this from the definition of addDouble. Random testing and proof for
properties like this are much more practical for Haskell than for traditional imperative
and object-oriented (OO) languages.

Haskell and GHCi

This text uses the programming language Haskell, which has freely available compilers
and interpreters for most types of computer system. Here we use the GHCi interpreter
which provides an ideal platform for the learner, with its fast compile cycle, simple
interface and free availability for Windows, Unix and Macintosh systems.

Haskell began life in the late 1980s as an intended standard language for lazy func-
tional programming, and since then it has gone through various changes and modifica-
tions. This text is written in Haskell 2010, which is the latest standard for the language
at the time of writing. The standard for Haskell is under yearly review, but it is likely
that the parts of the language discussed here will be stable in future versions of the
standard.

While the book covers most aspects of Haskell 2010, it is primarily a programming
text rather than a language manual. Details of the language and its libraries as well as
a wealth of other material about Haskell are available from the Haskell home page,
www.haskell.org.

Who should read this book?

This text is intended as an introduction to functional programming for computer science
and other students, principally at university level. It can be used by beginners to computer
science, or more experienced students who are learning functional programming for the
first time; either group will find the material to be new and challenging.

The book can also be used for self-study by programmers, software engineers and
others interested in gaining a grounding in functional programming.

The text is intended to be self-contained, but some elementary knowledge of com-
mands, files and so on is needed to use any of the implementations of Haskell. Some
logical notation is introduced in the text; this is explained as it appears. In Chapter 20 it
would help to have an understanding of the graphs of the 1og, n? and 2® functions.

What is distinctive about the book?

Introductory programming texts will always have alot in common, but each has its distinct
ethos. These are the key aspects of Haskell: The Craft of Functional Programming:

e Haskell has a substantial library of built-in functions, particularly over lists, and
we exploit this, encouraging readers to use these functions before seeing the details
of their definitions. This allows readers to progress more quickly, and also accords

X PREFACE

with practice: most real programs are built using substantial libraries of pre-existing
code, and it is therefore valuable experience to work in this way from the start.

e From the start we introduce property-based testing with QuickCheck. This has
shown itself to be a lightweight yet effective way of improving program quality,
and examples throughout the book illustrate just that.

e The text gives a thorough treatment of reasoning about functional programs, be-
ginning with reasoning about list-manipulating functions. These are chosen in
preference to functions over the natural numbers for two reasons: the results one
can prove for lists seem substantially more realistic, and also the structural induc-
tion principle for lists seems to be more acceptable to students. From the start,
property-based testing and proof are compared and contrasted.

e The Picture case study is introduced in Chapter 1 and revisited throughout the
text; this means that readers see different ways of programming the same function,
and so get a chance to reflect on and compare different designs. The same inter-
face for pictures is also implemented using browser-based graphics for realistic
presentation.

e Thereis an emphasis on Haskell as a practical programming language, with an early
introduction of modules, and the do notation for I/O. Other monadic programs are
referred to later in the book.

e Types play a prominent role in the text. Every function or object defined has its
type introduced at the same time as its definition. Not only does this provide a
check that the definition has the type that its author intended, but also we view
types as the single most important piece of documentation for a definition, since a
function’s type describes precisely how the function is to be used.

e A number of case studies are introduced in stages through the book: the picture
example noted above, the game of Rock — Paper — Scissors, an interactive calculator
program, regular expression processing, a coding and decoding system based on
Huffman codes and a small queue simulation package. These are used to introduce
various new ideas and also to show how existing techniques work together. There’s
an overview of what each case study covers on page xxi.

e A particular emphasis is laid on using Haskell for embedded domain-specific
languages, with a chapter discussing this and giving a number of examples of
monadic and combinator-based DSLs.

e Support materials on Haskell, including a substantial number of web links, are
included in the concluding chapter. Various appendices contain other backup in-
formation including details of the availability of implementations, common GHCi
errors and a comparison between functional, imperative and OO programming.

e Other support materials appear at www.haskellcraft.comand www. pearsoned
.co.uk/thompson

Outline

The introduction in Chapter 1 covers the basic concepts of functional programming:
functions and types, expressions and evaluation, definitions, proof and property-based
testing with QuickCheck. Some of the more advanced ideas, such as higher-order

PREFACE Xi

functions and polymorphism, are previewed here from the perspective of the exam-
ple of pictures built from characters. A second implementation of pictures illustrates a
discussion about domain-specific languages, which are the subject of Chapter 19. The
picture examples is one of the running examples in the book, which we revisit a number
of times to illustrate new concepts as they are introduced.

Chapter 2 looks at the practicalities of GHCI, the interactive version of the Glasgow
Haskell Compiler. GHCi comes as a part of the Haskell platform, which is also introduced
here. After looking at the basics of the module system, the standard prelude and the
Haskell libraries, we look at a first exercise using an SVG implementation of the Picture
type. These two chapters together cover the foundation on which to build a course on
functional programming in Haskell.

Information on how to build simple programs over numbers, characters, strings and
Booleans is contained in Chapter 3. The basic lessons are backed up with exercises,
as is the case for all chapters from here on. With this basis, Chapter 4 steps back and
examines the various strategies which can be used to define functions, such as auxiliary
functions, local definitions and recursion. This chapter also introduces the simplest data
types in the form of enumerated types. These types are used in the first discussion of the
Rock — Paper — Scissors game which is another case study which we return to later in
the book.

Structured data, in the form of tuples, lists and algebraic types come in Chapter 5.
Algebraic types are used to represent products and sums, so giving records and vari-
ant records in other terminology. After introducing the idea of lists, programming
over lists is performed using two resources: the list comprehension, which effec-
tively gives the power of map and filter; and the first-order prelude and library
functions.

Nearly all the list prelude functions are polymorphic, and so polymorphism is intro-
duced at the start of Chapter 6, which also examines the list functions in the standard
prelude, and then uses them in various extended examples. Only in Chapter 7 is prim-
itive recursion over lists introduced, and a text processing case study provides a more
substantial case study of how recursion is used in defining list functions.

Chapter 8 shows how simple terminal IO is handled in Haskell: to do this the do
notation for writing programs of type (I0 a) is introduced as an extension of Haskell’s
syntax, with the explanation of what underlies it being postponed to Chapter 18, where
monads are covered. An interactive version of the Rock — Paper — Scissors game is used
to illustrate IO in practice.

Chapter 9 introduces reasoning about list-manipulating programs, on the basis of a
number of introductory sections giving the appropriate logical background. Guiding prin-
ciples about how to build inductive proofs are presented, together with a more advanced
section on building successful proofs from failed attempts. The chapter also describes
the links between property-based testing and proof.

Higher-order functions are introduced in Chapters 10 and 11. First, functional argu-
ments are examined, and it is shown that functional arguments allow the implementation
of many of the ‘patterns’ of computation identified over lists at the start of the chapter.
Chapter 11 covers functions as data, defined both as lambda-expressions and by partial
application. These ideas are illustrated in Chapter 12 by revisiting a number of running
examples, including pictures and the RPS game, as well as introducing new case studies
of regular expression processing and index creation.

Xii PREFACE

Type classes allow functions to be overloaded to mean different things at different
types; Chapter 13 covers this topic as well as surveying the various classes built into
Haskell, and exploring the way in which types are checked in Haskell. In general, type
checking is a matter of resolving the various constraints put upon the possible type of
the function by its definition.

Algebraic types like trees are the subject of Chapter 14, which covers all aspects
of algebraic types from design and proof to their interaction with type classes, as well
as introducing numerous examples of algebraic types in practice. These examples are
consolidated in Chapter 15, which contains the case study of coding and decoding of
information using a Huffman-style code. The foundations of the approach are outlined
before the implementation of the case study. Modules are used to break the design into
manageable parts, and the more advanced features of the Haskell module system are
introduced at this point.

An abstract data type (ADT) provides access to an implementation through a restricted
set of functions. Chapter 16 explores the ADT mechanism of Haskell and gives numerous
examples of how it is used to implement queues, sets, relations and so forth, as well as
giving the basics of a simulation case study.

Chapter 17 introduces lazy evaluation in Haskell which allows programmers a dis-
tinctive style incorporating backtracking and infinite data structures. As an example of
backtracking there is a parsing case study, and infinite lists are used to give ‘process
style’ programs as well as a random-number generator.

Haskell programs can perform input and output by means of the IO types, first
introduced in Chapter 8. Chapter 18 revises this, and illustrates some larger-scale ex-
amples, including an interactive front-end to the calculator. The foundations of the do
notation lie in monads, which can also be used to do action-based programming of a
number of different flavours, some of which are examined in the second half of the
chapter.

Domain-specific languages are one area where Haskell has been used very effectively.
Chapter 19 explains what a DSL is, how a DSL can be embedded in a language like
Haskell, and the distinction between shallow and deep embeddings. Example DSLs build
on earlier case studies, as well as introducing new ones such as the generator language
for QuickCheck, which neatly illustrates a monadic DSL.

The text continues with an examination in Chapter 20 of program behaviour, by which
we mean the time taken for a program to compute its result, and the space used in that cal-
culation. It also explains the basics of how to measure the run-time behaviour of Haskell
programs. Chapter 21 concludes by surveying various applications and extensions of
Haskell as well as looking at further directions for study. These are backed up with web
and other references.

The appendices cover various background topics. The first examines links with func-
tional and OO programming, and the second gives a glossary of commonly used terms
in functional programming. The others include a summary of Haskell operators and
GHCi errors, together with details of the various implementations of Haskell. The final
appendix contains suggestions for larger-scale Haskell projects.

The Haskell code for all the examples in the book, as well as other background
materials, can be downloaded as explained on www.haskellcraft.com.

PREFACE Xiii

What has changed from the second edition?

The third edition has seen changes throughout. Material, particularly by way of new
examples, has been added to every chapter, and the order of presentation has changed in
response to feedback on the previous edition. In detail the changes are these:

QuickCheck is used throughout to test Haskell functions. Properties are developed
right from the start, and QuickCheck is used to verify them — or indeed to show
that properties can be erroneous too. HUnit is also introduced, but is used less
intensively.

QuickCheck is presented as complementary to proof, which has always been in-
cluded in the book: QuickCheck can provide strong evidence for a property holding,
while proof can establish its validity. Some custom generators are supplied in the
code base for the book so that programmers can test their code before the details
of how generators can be defined are discussed in Chapter 19.

A number of new examples have been included, some in a single place and others
running through a number of chapters. These include the Rock — Paper — Scissors
(RPS) game, card games in general, an SVG rendering of Pictures and regular
expression. There is a particular emphasis on using functions as data: they appear
as strategies in RPS and as recognizers for regular expressions.

One area where Haskell has been particularly successful is in providing the sub-
strate for developing embedded domain-specific languages (DSLs) and Chapter
19 is devoted to this. It begins by explaining the reasons for developing DSLs, and
then examines the difference between shallow and deep embeddings, looking at
the examples of pictures and regular expressions. It concludes with a discussion
of monadic DSLs, exemplified by naming in a pictures DSL and by the generators
of QuickCheck.

The text has been reordered so that some material comes earlier than it did pre-
viously.! Material on data types comes substantially earlier, with enumerated
types coming into Section 4.3 and non-recursive types into Section 5.3. Program-
ming for IO interactions is introduced in Chapter 8 to support the Rock — Paper —
Scissors example: this treatment simply presents the do notation as the way that
10 is programmed, and delays an explanation of the underlying mechanism to
Chapter 18. Finally, local definitions first come into Section 4.2.

The second edition used Hugs as its preferred implementation; in this edition we
have moved to using GHCi, which comes as a part of the Haskell Platform. As well
as introducing GHCi, we have added detailed discussions of how to leverage the
best from Haskell libraries and packages through using Hackage, Cabal, Hoogle
and Hayoo!

'Tt is intriguing that requests to move material forward outnumber those to delay it by a factor of more than
ten to one: perhaps the ideal book introduces all its material in the first chapter, and uses the remaining twenty
to discuss and expand on it?

Xiv PREFACE

o A realistic implementation of pictures — using the SVG / HTMLS capabilities of
modern web browsers — has been added to the ‘ASCII art’ implementation of the
second edition.

e The discussions in Chapter 20 on performance have been supplemented with
material on how to measure the performance of real programs in GHC.

e A collection of project suggestions has been added as an appendix. Further support
materials are available at the homepage www.haskellcraft.com, and solutions
to exercises are available to bona fide instructors by application to the publishers.

What changed from the first edition to the second?

These changes were reported in detail in the preface to the second edition, but in summary
the changes were these.

e The approach to defining functions over lists. To avoid the situation in which
students try to define each new function over lists by recursion, we first introduced
list comprehensions and list library functions, only introducing recursion after that.
The jury is out over whether this effected the change it was meant to.

e The introduction of the Pictures case study as a running theme, giving visual
feedback on programs, and also showing the role of higher-order, polymorphic
functions in general-purpose Haskell list processing. An example I still like, but
seen by some as making Haskell look lame.

e The edition was Haskell 98 compliant, and in particular used standard names for
standard functions. It also contained an introduction to the Hugs interpreter, which
was the implementation of choice for the book.

e Using the do notation, rather than the functional notation of >>= and return, for
I/0 programs and monadic programs in general.

e A more thorough treatment of Haskell typing and the mechanics of type checking
in practice.

e The addition of some material on a problem-solving approach to getting started
with programming, loosely based on Polya’s work.

How to read this book

This introduction to functional programming in Haskell is designed to be read from start
to finish. New material comes in though the book, and is illustrated as it is introduced by
a mixture of new examples and running case studies. Some parts of the text stand apart
from the general flow, and can safely be omitted to build a shorter course:

Program proof The book emphasizes program proof, in a thread starting with Chapter 9,
and followed up in Sections 11.6, 14.7, 16.10 and 17.9.

Program performance Similarly, Chapter 20 gives a self-contained treatment of pro-
gram time and space behaviour.

PREFACE Xv

The case studies in the book are designed to illustrate particular points and constructs as
. well as to give examples of larger programs than single function definitions.

Pictures This is used to show the utility of lists in modelling, as well as the value of the
higher-order and polymorphic functions over lists, such as zipWith, map and (++).
Pictures are also used to illustrate shallow and deep embeddings of domain-specific
languages in Chapter 19, with a variant of ‘named’ pictures giving an example of a
monadic DSL.

Rock — Paper - Scissors In this example, we see Move as a first example of an enu-
merated type in Section 4.3, and strategies as an example of ‘functions as data’ in
Section 8.1. It also provides an example of an IO interaction later in that chapter.

Calculator The calculator example begins in Section 14.2 with the Expr type, a recur-
sive algebraic data type describing numerical expressions. Chapter 16 introduces
the abstract type of Store used to model the values of the variables. In Section 17.5
we see how to parse text into numerical expressions and finally in Section 18.3 we
give an interactive read-evaluate-print loop for calculation.

Library database When thisisintroducedin Section 5.7 it shows how to build programs
over lists using list comprehensions, without using explicit recursion.

Supermarket billing This example comes in Section 6.7 and again illustrates the utility
of the list library functions independently of explicit recursive definitions.

Text processing In text processing, Section 7.6, we present an example where explicit
recursion over lists is necessary, in contrast to the previous two.

Regular expressions Regular expressions are first introduced as an example of ‘func-
tions as data’, and then discussed again in Chapter 19 when a deep embedding is
developed to contrast with the earlier treatment, which is a shallow embedding.

Huffman codes Chapter 15 is devoted to this multi-module application. The principal
purpose of this is to show a larger example of programming in practice.

Other examples Other examples of simulation, relations and graphs are used to illus-
trate lazy evaluation in Chapter 17.

Acknowledgements

A book can only be improved by feedback, and I am very grateful to everyone who has
contributed help and comments. Particular thanks are due to Thomas Schilling, whose
advice on using cabal and hackage, as well as on the wider Haskell landscape, was
absolutely invaluable. Eerke Boiten kindly proofread material on card games, and Olaf
Chitil had a host of practical suggestions from his recent teaching experience. They and
other colleagues from Kent and the USA contributed to lively discussions on what it
means to be a DSL in Haskell, and the role of monads in DSLs.

Colleagues at Erlang Solutions in London were kind enough to provide an audience
for the ‘Haskell Evening Class’ where some of this material was used; their questions
and discussions helped to sharpen the presentation in many places.

Xvi PREFACE

. Rufus Curnow of Addison-Wesley has supported this third edition from its inception
almost to delivery; thanks very much to him for his hard work and patience, and also
to Simon Lake who took over the task in the final stages. The anonymous referees were
focused and constructive in their advice, both on my suggested changes and their own.

This book would not exist without all the efforts of those in the Haskell community,
supporting first-class systems like GHC, and the burgeoning number of open source
packages and applications that make Haskell such a pleasure to use: thanks very much
to all of you!

Much appreciated sabbatical leave from the University of Kent has provided me with
the time to work on this new edition; without this [am sure it would have taken many
more years for the book to come to light.

Finally I thank my family for their support, understanding and encouragement while
I was writing this: I dedicate the book to them.

Simon Thompson
Canterbury, December 2010

Publisher’s Acknowledgements

The publisher would like to thank the following for their kind permission to reproduce
their photographs:

Fotolia.com: Sean Gladwell / Fotolia 79, 178

Every effort has been made to trace the copyright holders and we apologise in ad-
vance for any unintentional omissions. We would be pleased to insert the appropriate
acknowledgement in any subsequent edition of this publication.

Contents

Preface

1 Introducing functional programming

1.1 Computers and modellingouiuiniiininenineeninenenn.
1.2 Whatisafunction?iuiiiriiiiiiiiii i
1.3 Pictures and functionsc.ciiiiiiiiniii e
18 TYPOS omm s s s i s ohis weis s St s 516 s 00a0 5 5165 55 8 6,500 5 90 5 o 3 i A0 4 WA S B 5
1.5 The Haskell programming languageccocoieinon...
1.6 Expressions and evaluationcooiiiiiiiiiiiiaiiiia,
L7 DEADIONE s v s wie e o sy somsiiis i s 5o wiss 56 6808 330 5506 50y § 5568 s 3 07
1.8 Function definitionsc.cviuiiiiiiiiiiininiiiiiarinians.
1.9 Types and functional programmingcccooiuo....
1.10 Calculation and evalBation cussessssssnssssosmassssaseassones
1.11 The essence of Haskell programming
1.12 Domain-specific languagescoiiiiiiiiiiiiiiiiniaan...
1.13 Twomodels of PActuresooiiiiiiiiiiiiniiinnanannnnn.
1.14 Tests, properties and proofsc.euiiiiieiiiniiniienenn.
2 Getting started with Haskell and GHCi
2.1 Afirst Haskell programcooiiiiiiiiiniiiinninniinians.
22 Using Haskell inpracticeoiiiriiriiianneniniuanenn e
23 USINE GHIC . ciis smis vmiss s s aimis 5608 5 0w 551006 505,588 4 b wime 308 obusin alons o
2.4 The standard prelude and the Haskell libraries
2.5 MOAUIES! s s+ 505 5 wmria 305 5 75975 F500S B076 s T S5 5 e bomn s mamsndoi miorin o
2.6 Asecond example: PICTUIES viuiiiit i
2.7 Errors and eITor MeSSAZES vuutnnt it

3 Basic types and definitions

3.1 The Booleans: BoOLvuuiereneee e eentnieeaneenaeannns
3.2 Theintegers: Integer and TN .. cuveamsaissmeinisims s ssins o s e
33 - OVeHloading s awms s 558 enio s x5 ouns w5 omiam e i sagers b

3.4 GUAIAS .t

il

CONTENTS
35 Characters:and StNES - :vcovuasmisimssvusoses siessessaniswss oo s ssds
3.6 Floating-point numbers: Floatc.ciiiiiiiiieinian...
N N) 11 - G P
Designing and writing programs
4.1 Where do I start? Designing a program in Haskell
4.2 Solving a problem in steps: local definitions o00i.n
4.3 Defining types for ourselves: enumerated typesc.ceen...
4.4 RECUTBION, & 5 oj 5515 5 51505 o 8555 5508 851505 5 809 54159, 51578 S 1aer s 808 808 4 a0 s s § 5005 &
4.5 Primitive recursion in practicec.oiiiiiiiiiinia.n.
4.6 Extended €Xercise: PiCLUIESc.eiuueiuienueonunnneenannns
4.7 General Torms OF TECUISION' uvuunvms semamas sismssmims svors i 408 dansss
4.8 ProgramlestiDg ... i.iiesesias e v sioms.s s 556008 50606 450855 5.6 50 .60
Data types, tuples and lists
5.1 Introducing tuples and listsccovviiiiniiiiiiiiiii i
5.2 TUPIE tYPES v ittt e
5.3 Introducing algebraic typesiiiiiiiiiiiiiiiiiiiiian
54 Ourapproach to listscoiuiiniiiiiiiiiiiiiiiii e
5 Lists IHARKEIl . ou:iomssms sums s vmes sms sams s s mios s smie s-iws o
5.6 List COMPTERBNSIONS. « ciis s scns siis s wiws siis s 16 4 57w & wista wiss 4500 § w01 o 4
5.7 Alibrarydatabaseciiiiiiiiiiiiii e
Programming with lists
6.1 Generic functions: polymorphismc.cciiiiiiiiiiiiininnn.
6.2 Haskell list functions in the Preludecoooiininnn..
6.3 Finding your way around the Haskell libraries
6.4 The Picture example: implementationcc.o..n.
6.5 Extended exercise: alternative implementations of pictures
6.6 Extended exercise: positioned picturescoiiiiiiinnn.
6.7 Extended exercise: supermarket billing
6.8 Extended exercise: cards and card gamescciiininn
Defining functions over lists
7.1 Pattern matching revisitedooiiiiiiiiiiiaiiiaiaaa,)
7.2 Lists and list pafterns o :cvss ssvsmis smsswsssn sssmsan ssiws svis s ses s
7.3 Primitive recursionover lists i,
7.4 Finding primitive recursive definitionso....
7.5 General recursions over listsc.oviiiiiiiiiiiiiiiiiiiiia.,
7.6 Example: teXt PrOCESSING . ce:smse vmnsss sasamns vaes sms sise s ass e
Playing the game: I/O in Haskell
8.1 Rock — Paper — Scissors: Strategiesc..oviuiiiunennnnn.
82 Whyisl/OanISSUET:coisois b vos shus viors s 5im s miis Avs & wios s
8.3 The basics of input/outputc..iiiiiiiiiiiiiiiiiin
84 Thedomnotationieieierininueneinonurianeneeinennns

