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Preface

Polynomials pervade mathematics, and much that is beautiful in mathe-
matics is related to polynomials. Virtually every branch of mathematics,
from algebraic number theory and algebraic geometry to applied analy-
sis. Fourier analysis, and computer science, has its corpus of theory arising
from the study of polynomials. Historically, questions relating to polyno-
mials, for example, the solution of polynomial equations. gave rise to some
of the most important problems of the day. The subject is now much too
large to attempt an encyclopedic coverage.

The body of material we choose to explore concerns primarily polyno-
mials as they arise in analysis. and the techniques of the book are primarily
analytic. While the connecting thread is the polynomial, this is an analysis
book. The polynomials and rational functions we are concerned with are
almost exclusively of a single variable.

We assume at most a senior undergraduate familiarity with real and
complex analysis (indeed in most places much less is required). However,
the material is often tersely presented, with much mathematics explored
in the exercises, some of which are quite hard, many of which are supplied
with copious hints, some with complete proofs. Well over half the material
in the book is presented in the exercises. The reader is encouraged to at
least browse through these. We have been much influenced by Pélya and
Szeg6’s classic “Problems and Theorems in Analysis” in our approach to
the exercises. (Though unlike Pélya and Szegé we chose to incorporate the
hints with the exercises.) -



viii Preface

The book is mostly self-contained. The text, without the exercises, pro-
vides an introduction to the material, but much of the richness is reserved
for the exercises. We have' attempted to highlight the parts of the theory
and the techniques we find most attractive. So, for example, Miintz’s lovely
characterization of when the span of a set of monomials is dense is explored
in some detail. This result epitomizes the best of the subject: an attractive
and nontrivial result with several attractive and nontrivial proofs.

There are excellent books on orthogonal polynomials, Chebyshev poly-
nomials, Chebyshev systems, and the geometry of polynomials, to name but
a few of the topics we cover, and it is not our intent to rewrite any of these.
Of necessity and taste, some of this material is presented, and we have at-
tempted to provide some access to these bodies of mathematics. Much of
the material in the later chapters is recent and cannot be found in book
form elsewhere.

Students who wish to study from this book are encouraged to sample
widely from the exercises. This is definitely “hands on” material. There
is too much material for a single semester graduate course. though such
a course may be based on Sections 1.1 through 5.1. plus a selection from
later sections and appendices. Most of the material after Section 5.1 may
be read independently.

Not all objects labeled with “E” are exercises, Some are examples.
Sometimes no question is asked because none is intended. Occasionally
exercises include a statement like, “for a proof see ... ”; this is usually an
indication that the reader is not expected to provide a proof.

Some of the exercises are long because they present a body of material.
Examples of this include E.11 of Section 2.1 on the transfinite diameter of
a set and E.11 of Section 2.3 on the solvability of the moment problem.
Some of the exercises are quite technical. Some of the technical exercises.
like E.4 of Section 2.4. are included, in detail. because they present results
that are hard to access elsewhere.
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1

Introduction and Basic Properties

Overview

The most basic and important theorem concerning polynomials is the Fun-
damental Theorem of Algebra. This theorem. which tells us that every
polvnomial factors completely over the complex numbers. is the starting
point for this book. Some of the intricate relationships between the loca-
tion of the zeros of a polynomial and its coefficients are explored in Section
2. The equally intricate relationships between the zeros of a polynomial and
the zeros of its derivative or integral are the subject of Section 1.3. This
chapter serves as a general introduction to the body of theory known as the
geometry of polynomials. Highlights of this chapter include the Fundamen-
tal Theorem of Algebra, the Enestrom-Kakeya theorem, Lucas’ theorem,
and Walsh's two-circle theorem.

1.1 Polynomials and Rational Functions

The focus for this book is the polynomial of a single variable. This is an
extended notion of the polynomial, as we will see later, but the most im-
portant examples are the algebraic and trigonometric polynomials, which
we now define. The complex (n + 1)-dimensional vector space of algebraic
polynomials of degree at most n with complex coefficients is denoted by

25



2 1. Introduction and Basic Properties

If C denotes the set of complex numbers, then

(1.1.1) Ty {p:p(z) = Xn:akzk, ax € C} :

k=0

When we restrict our attention to polynomials with real coefficients we will
use the notation

(1.1:2) = {p aplz)= Zakzk. ax € R} :
k=0

where R is the set of real numbers. Rational functions of type (m,n) with
complex coefficients are then defined by

(1.1.3) RS, = {%’ :peP;;,,qu,f}.
while their real cousins are denoted by

oty L
(1.1.4) Reviin ._{a.pe’Pm,qE'Pn} :

The distinction between the real and complex cases is particularly impor-
tant for rational functions (see E.4).

The set of trigonometric polynomials 7,° is defined by

(1.1.5) T¢ = {t S 1(0) = Z are®®, ar € c} :

k=-n

A real trigonometric polynomial of degree at most n is an element of 7.¢
taking only real values on the real line. We denote by 7,, the set of all real
trigonometric polynomials of degree at most n. Other characterizations of
T, are given in E.9. Note that if z := €'?, then an arbitrary element of 7,
is of the form

2n
(1.1.6) z‘"Zbkz", b eC

k=0

and so many properties of trigonometric polynomials reduce to the study
of algebraic polynomials of twice the degree on the unit circle in C.

The most basic theorem of this book, and arguably the most basic
nonelementary theorem of mathematics, is the Fundamental Theorem of
Algebra. It says that a polynomial of exact degree n (that is, an element
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of PE\P:_,) has exactly n complex zeros counted according to their mul-
tiplicities.

Theorem 1.1.1 (Fundamental Theorem of Algeora). If

n
p2):=) @', @€C, an#0,
=0

then there erist oy, s, ... ,a, € C such that

p() = an [ (2 - ).

i=1

Here the multiplicity of the zero at a; is the number of times it is
repeated. So, for example,

(e —1)%(z +9)

is a polynomial of degree 5 with a zero of multiplicity 3 at 1 and with a
zero of multiplicity 2 at —i. The polynomial

p(:):=Za,-:', a:cC, a:#0
=0
is called monic if its leading coefficient a,, equals 1. There are many proofs
of the Fundamental Theorem of Algebra based on elementary properties
of complex functions (see Theorem 1.2.1 and E.4 of Section 1.2). We will
explore this theorem more substantially in the next section of this chapter.

' Comments, Exercises, and Examples.

The importance of the solution of polynomial equations in the history of
mathematics is hard to overestimate. The Greeks of the classical period un-
derstood quadratic equations (at least when both roots were positive) but
could not solve cubics. The explicit solutions of the cubic and quartic equa-
tions in the sixteenth century were due to Niccolo Tartaglia (ca 1500-1557),
Ludovico Ferrari (1522-1565), and Scipione del Ferro (ca 1465-1526) and
were popularized by the publication in 1545 of the “Ars Magna” of Giro-
lamo Cardano (1501-1576). The exact priorities are not entirely clear, but
del Ferro probably has the strongest claim on the solution of the cubic.
These discoveries gave western mathematics an enormous boost in part
because they represented one of the first really major improvements on
Greek mathematics. The impossibility of finding the zeros of a polynomial
of degree at least 5, in general, by a formula containing additions, subtrac-
tions, multiplications, divisions, and radicals would await Niels Henrik Abel
(1802-1829) and his 1824 publication of “On the Algebraic Resolution of
Equations.” Indeed, so much algebra, including Galois theory, analysis, and
particularly complex analysis, is born out of these ideas that it is hard to
imagine how the flow of mathematics might have proceeded without these
issues being raised. For further history, see Boyer [68].
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E.1 Explicit Solutions.
a] Quadratic Equations. Verify that the quadratic polynomial 22 + bz +¢

has zeros at
—b— VB2 —4c —b+ Vb —4c
2 ’ 2 :

b] Cubic Equations. Verify that the cubic polynomial z3 + bz + ¢ has
zeros at

e -(";")H\/ﬁ(“;”), -(“;ﬁ)-i\/ﬁ(“gﬁ),

where
_a—C Cz+b3
T=YT R

and
. C2 b‘}
PN - Nd o

c] Show that an arbitrary cubic polynomial, z° + az? + bz + c. can be
transformed into a cubic polynomial as in part b] by a transformation z —
ex+ f.

d] Observe that if the polynomial 2 + bz + ¢ has three distinct real zeros.
then a and 3 are necessarily nonreal and hence 4b° + 27¢? is negative. So,
in this simplest of cases one is forced to deal with complex numbers (which
was a serious technical problem in the sixteenth century).

e] Quartic Equations. The quartic polynomial z* + az® + bz? + cz + d
has zeros at

S e

|
TR

R o
o B S

4
=,
=\/——b S
R 1 =1

y is any root of the resolvent cubic

-l

where

y® — by? + (ac + 4d)y — a*d + 4bd — ¢*,

and
3a2 4ab — 8¢ — a®
L e TAE ot v 48 SRy
a,f= 2 R2-2b+ v i R#0,
while
2
a;f= 3%—2b:t2\/y2-—4d, R=0.

These unwieldy equations are quite useful in conjunction with any symbolic
manipulation package.
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E.2 Newton’s Identities. Write

(z-—ai)(x—a) - (z—ap) =z =1zt + 2" 2 =+ (=1)",.
The coefficients cx are, by definition, the elementary symmetric functions
in the variables a;, ... ,05.

a] For positive integers k, let

spr=af+ak+-+ak.

Prove that

k-1 '
i (_l)k'Hka + (—-l)k Z (—I)JCk_ij 4 =N

j=1

and

k=1 _
sk = (=1)k+1 Z (-1)ck—;85, k>n.
j=k-n

Here, and in what follows, an empty sum is understood to be 0.

A polynomial of n variables is a function that is a polynomial in each
of its variables. A symmetric polynomial of n variables is a polynomial of
n variables that is invariant under any permutation of the variables.

b] Show by induction that any symmetric polynomial in n variables (with
integer coefficients) may be written uniquely as a polynomial (with integer
coefficients) in the elementary symmetric functions fi, fa,... , fa-

Hint: For a symmetric polynomial f in n variables, let

0.(f):=(ulvu2v"'1'/n)e VIZVZZ"'ZVHZO

V1 v2 Vn
E : . ay o
f($1,$2,--. :xn) = Z Z ca;.az....,a,.xllzzz"'zg"

a1=0a2=0 an=0
and ¢y, 4, vy 0. If
o(f) = (,v2,... ,vn) and o(g) = (%1, 72,...",7n),

then let o(f) < o(g) if v; < 7; for each j with a strict inequality for at least
one index. This gives a (partial) well ordering of symmetric polynomials in
n variables, that is, every set of symmetric polynomials in n variables has
a minimal element. Now use induction on o(f). n]
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c¢] Show that

<1+2\/5

(By convergence to zero (mod 1) we mean that the quantity approaches
integral values.)

)Lo' e 1),

Hint: Consider the integers
Sk = af 5 a'{ .

where a; := (1 + V5) and az == (1 - V5). a
d] Find another algebraic integer a with the property that

o® =0 (mod1).

Such numbers are called Salem numbers (see Salem [63]). It is an open
problem whether any nonalgebraic numbers o > 1 satisfy a¥ — 0 (mod 1).

E.3 Norms on P,. P, is a vector space of dimension n+ 1 over R. Hence
P, equipped with any norm is isomorphic to the Euclidean vector space
R™*1 and these norms are equivalent to each other. Similarly, P¢ is a
vector space of dimension n+ 1 over C. Hence P; equipped with any norm
is isomorphic to the Euclidean vector space C"*!, so these norms are also
equivalent to each other. Let

n
T = Zakxk. a, € R.
k=0

Some common norms on P, and P: are

llpll.4 :=sup |p(z)| supremum norm
T€EA

=[|pllL. () L norm

1/p
Wz, =( [ IptPat) b
[Pl :=max{lax[} “los nOTM

. n 1/p -

Ik, =3 locP) o A

k=0 :

In the first case A must contain n + 1 distinct points. In the second case A
must have positive measure.
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a] Conclude that there exist constants Cy, Cz, and C3 depending only on
n so that

1P li=1.1 < Cillpll{=1,11 »

> lail < Collpllf-1, 5

=0
Iplli=1,11 < Csllplly[=1,1;

for every p € PS5, and, in particular, for every p € P,.

These inequalities will be revisited in detail in later chapters, where
precise estimates are given in terms of n.

b] Show that there exist extremal polynomials for each of the above in-
equalities. That is, for example,

“p’”[-l.ll
0#pEPr "p”[—l.ll

is achieved.

B4 On' R
a] R,.n is not a vector space because it is not closed under addition.
b] Partial Fraction Decomposition. Let 7, ,, € RS, ,, be of the form

p(z)

H;‘n:’l(z QI .

Then there is a unique representation of the form

p€Ps. ay distinct, p(ax)#0.

’

m mi
Qg 5
raal(z) =a(zy+ > 3. m D qePiLy s €
k=1 j=1

(if m > n, then PS_,, is meant to be {0}).
Hint: Consider the type and dimension of expressions of the above form. O
¢] Show that if

Toi€ Roms

then
Re(rn,m(")) € Rutm.2m -

This is an important observation because in some problems a rational func-
tion in Ry, , can behave more like an element of R2p 2, than Ry 5.
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E.5 Horner’s Rule.
a] We have

n
Za,—xi = (- ((@nZ + @n-1)T+ @n_3)T+ -+ a1)T +ao.

i=0

So every polynomial of degree n can be evaluated by using at most n ad-
ditions and n multiplications. (The converse is clearly not true; consider
)

b] Show that every rational function of type (n — 1,n) can be put in a
form so that it can be evaluated by using n divisions and n additions.

E.6 Lagrange Interpolation. Let 2; and y; be arbitrary complex numbers
except that the z; must be distinet (z; # z;, for i # j). Let

H?:O.i#k(z )

—_—_——. o b e
Hi:O.:;ék(zk - z)

l(2) =

a] Show that there exists a unique p € P¢ that takes n+ 1 specified values
at n + 1 specified points, that is,

p(2:) = v, L= T

This p € P, is of the form
n
p(z) =Y uilk(2)
k=0

and is called the Lagrange interpolation polynomial.

If all the z; and y; are real, then this unique interpolation polynomial
is in P,.
b] Let

n

w(z) := H (z—z).

=0

Show that ;. is of the form
¥ w(z)
W)

and

p(z)=zn:___yi“’ﬁ_

= (2 — 2)w'(26)



