= PEARSON

Addison
BOOKS | Wesley

Accelerated C++

Practical Programming by Example

E|IIIWH'H1 T

(BESTR)

,\
/

A e :

Andrew Koenig
(%) Barbara E. Moo =

Accelerated C++

(Z23ZhR)

Practical Programming by Example

Andrew Koenig
(%) Barbara E. Moo =

PLA T v AR i

China Machine Press

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Accelerated C++: Practical Programming by Example
(ISBN 0-201-70353-X) by Andrew Koenig and Barbara E. Moo, Copyright © 2000.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A3 S RZE AR Pearson Education Asia Ltd. #ZAUHLHE Tk Hikst s B, RE
AR BEFFT, AELMEMAREHSDEEBANE,

RRFHEAREFMEREN (AREPERERE. RIFHTERX P ESEHX)
HEET.

A A5 £} Hill A Pearson Education (A MARER) BOLHithir%E, THREEAR
.

WRRE, BReR.
AP EEME AR TRARITHESAH

AHFENEIZE . BF.: 01-2006-1935

EBEREE (CIP) ¥iF

Accelerated C++ (33CHR) / (%) #URH (Koenig, A.) %%, —Jbst: HURT IR
#t, 2006.4

(C++i& 37 B 4)

44 3L : Accelerated C++: Practical Programming by Example

ISBN 7-111-18831-4

I.A- 0. ¥ O CEZF-BFRI-FEL V. TP312
v [iR A= B 45 18 CIPS BB 2 - (2006). - 550298255

VUM Tolk HAR A (lesthiPiskE B 5 EA#22S MBBCHTS 100037)
etk RIRE

b ntERfEENRIA R RIENRI - e AL RIT IR AT
20064F 4 A% 1 KRS 1 RENRI

718mm % 1020mm 1/16 - 22E[I5k

EHr: 42.005¢

JLIgAS, mAFET, BT, G, AARHEITIHiAR
Ak (010) 68326294

“C+HiZiTH B4 MPai=

B C++EA: o H R ISO/ANSI C++4rifE[a]tHLEAH , LABjarne Stroustrup & HIC++5E#E
Yigh—EHAB R DB FRA FRE” BEMERACH ., FLIEW, BRTHRA FCHMK
FraetEsl, C++iREbRm et AR TE L R B E R A& TUALERMNBRSHE
niE . . ARk, AR,

X R L AR S B AR bR & R AR ET, 5.
. BELLEEEAXNEMR A, DARAECHRIARR L 18 E B EM AR NZ
RBRFETHEARE, BMNERTHEBROCH+HEE, HEXNHBPREAFENER
lk., HIER—AAXEHEEE, ZLEEN, XEZERERLHERACH+HIHEIEHE
£ SERR R .

BAANINA, BRFEBERS. K&BE, HiFS. AE LR, EGRLOE, BEEA
GE LA ROl D A S EN A TR AR - ERKORE LR RF R, £4
Hik, AR R EE G R CH+ TR T AR, Bk, RTUAERM:HE, C++AYR A
KA —EFR B bR LA S — /4 B Ok 7 ol & Pk S f B

RISAE RN IR T —AMMBHC++BE, EMNHRE T HECHEF R
B, HAERKEE FAETRKYILGEEETC++IIETE . % 21 FEFH 5 1 Fh R R AR,
SC++AHKRI =l & RS T —EfR#ER, AmEd XM ES, A NET, Java
ARSI MR L MERESD, PFEEES LIS, TEARRES L mE, #KTF
‘R MC++IEF MR ASURIIA #H—PHBa%, X FEATIC++RIH AR
HELIERETRAWEM.

LAk Tolk H AR HE A3 4y st g i 4k £ R B C++ “BUARIL” #F e BhiE, M20064F
AW —F “C++ikirFB4E” N, XBENBRFRGS. momiEs, HERE
#H hEiEHerb SutterfE A E MM A CHERERKFIMAE . BHE, WEEREES
BARC+HFEM:, LASSAMAE, PR EmEEYE, BX EURFEREZE ., 3iFE
FRCIEWHE., AP Er R X5 H, BiEE/NINEEA. EAXENS
HIER S R iR, REOFLENERRIEAR, BB SRS A EC++HREEA
FHITE D o

E
200512 R

R IF K
www.royaloo.com

oif

Al

— M C++RIBRIF A X

BlEE Ry E R R 1 AT S B A ARIC++E 7, BEMMNBEC+H+H&A M
WoEbsy FFah, RE—BAEKH, XFRIEE LREEFYAR, BEXKAERENR
e BAVHAMCHIEECH, YRC++igBTCZ L. MR, BITA—FFLhEEMER R
BARsSt, RRIERBRRIN A R AR L Bt 45 4 BT (R R 2 il . X Ry AT ALEPRAR
PRk S & I C++EEFF o

M5B — T ERFBRNEIS RMAER FH . WOVEET RRFE IR T E S TEN
Rtk 2R, BAVRMRRE—Lofe i, (EXAMERAD THERFRIESR, mARKBEFA
TEBURE SRR LA,

ERAFBERZCH+REMAE U RIESFE, FUXBECE T —L£Cr+I3f
FEUEARR, EAMMRAMEERCH+IRE NS, XABLEAEM. C++HFHEER
25 S Bk A > an (e R R T gk B R

BEMNwAXEARERTMNFENERFENERFR

it ZME— N EFRINBESBRR LA — AC++ERMLIE, BERITFK
RGN RN RIR, MREXECLTHCES, B FRWfELKITHE, R
ERZGHSERIESHHAR . RMNRIA, EHRFNMRARURE HABEXLHEFZ
A, FAMKHERLEZ, HEOH=XK. fi—BfE5HARLOERT, hilHe
KERRE T .

2 FRATTE Ak B — b A B A o FEAR 3t R 8 SRR A CH+ SEELIN %‘kﬂ]idtéﬁff}ﬂT.
RE. FIREN I ERREE, TETREAMNERF, NAFEERIMAL
LAE A B s FE 5 AR & R, |AOTARARTH AR .

EREARBNE: NEEFERL—K, FENRERS HEZREHELERKER
IHiE A RES HIRRIRRFF . BLsh, MfTREBRBREIE. TR,

iiiE

BB R ZHLARAT, REAC+H (AR EREE) T8 H MR, XE
1R BRE I 2 4 R C++R FF IR 7 B BTk SR (KBS .

VR BN HIRE 1R BB R HORRAE . BilZn, RIRISER ¥ & HikkE, Hiks
— A FEBA B A FE R ROYREE T, ERMEETFH T REMA ST EH

vi

BHIFEKEOLT, BEHTLAFEZE, HARPRILLE LS TR iR
AT s, IR TR R R % 2 TR, HBxELEE B —REF,

BATH “HR" ESCHAEEFEER 2, BIEETITFLE S M8 20 1
fle—3), HAVANAZZRAREBFRITPHRELZNIBE. RE-DRIWERFRIXBET
WA 8 (R AR LEER oy B Z T LA I8, MR sy P L 20 . B —Fh R iE SR A T
AT eEA AR TR, SRR F RERE R ERXE TR,

BTN AMBIAEEFR, TREBHEELTR “HR”. 4%, BITEEHAEHERZ
iR, BN, SRFRARE . BIREN, LKA RIR—ATH X
MR BOIACEREIEN, mEXEMHERREL2S.

MEMERAERGFRIHF LR EMERNSER, BITEEIEES T HHE TIEL
B 2HATRER TR LAMEREN. RIOTETFHAIRE LR AT RRE, 2%
U, FRNEREMBMERACH ZRIWIHE T K 28 LI,

.nn./l?..

IR CH+REME— MR ERE, RFZENEABRLEN DM, RE4X
BHEREIFREEMEN—) iR

XFEH AR LRI E. AW ARG XKEEBREVMERTEEmM
ER—UIC++miR, HTFARMEFAMMAFEEARFERMMIR, HmEd —4A8ET
C++irAmmiRR45%E (f5l4nStroustrupfy {The C++ Programming Language), Addison-
Wesley, 2000) #AA[BEGEMEIFRFZMRANTFEZEMENRE. FELWHEERN, B
ERAFEIRLmMIR, BAMBATE,

B—FHE, C++HIiF 2o BAEEMEZER L, RSB TR 80t
T, BOVFETXERs . (UUERAABRENEBRESSHEENAE AR
TEWREMN ., EXLE, AEH—MHEBA (—NMEHCHESELHILRZLENERFR)
HIFEA, A45EA LS T hELIEYRAIIIA FEIXE.

fFERXLEE, RAILA%GRE B IERIC++EFFmdECEE M Kb iE S XIS EF. —
PREER T BRI BIINE, RAWE H CBFESE— B 2 BIMICH AL R Infi 2%,
e R BB HIEE PR B X o —FiE:: EHE—A3RTHER R EEHIE6 T
BB R Eb— LSRR ABIE— A6 R~-TIBR R B A S . C++II%EZ1 5254,

BT RARECH+ T 2B KA T /Y R . XFMAFRXIRSETRNBIRRER

A UEREMARE T LE. AEXBEREBRNMNASE T NMMRSSTAERTARRET
RS, BAXAERVER R A wl et S b # 90 B e PR E I3RS, T AR R L 848 B
EAFEN . MRAGHRERENTETHREASL THRT, HFo2HESAbER
HEANBRBELT E—RMBEAERLE LA, EARNEBSH MBI ARA LR
P, BH— B VRFTCAEEAEAIFR5E A F7E B BRI 2R . R 24 58 W] LA i) 32 3 i
XFGUIN A, AEERZANEE EREI%EX—4,

vii
ERERACHC+H+ERRFER

YEA—TTHORBIESH, RATRIHES TRAXLTIRELAENHALIESH
e R gm B R FFHIE R, TRy 75 2l i I —FF 44k 66 R B C++hndfe FER m R Rk
ZhEGXF “BER HHE, MRRELR—-NEALEMNCHRCHEF R, EFHX
BE—EAHHEM—ENHE, ENALEHERNEE.

HERE, WATRRSMX— BRI T WREANCHmMIRXN TEMBENBRT
C++ai AR, —FFEREEFANMAZLRTIENZ (ARHE), BRI
AR LB ER (WAFHE). RAR, RIREATELCH, IRATREE L
R FACHITHRE, XERE RIIC++HE R R B ECH &R Z R, XFp
FRIEAS, BERMNOGREMBEERARE, HEREEBRART AR L HC++H
H—H.

YRT, REBHAHRACH, AL EMNUXEATRHD. RIVCEERZIEN
WG 2R R TR ALEEE . #A0T, RIMNEZFEI10FARBRH RS, Rl
SRR FRRAT IR VRIY 1B Zprintffimalloc, %—J5 1, FAER IFBI 18 THEIR
HePEfstring 2, M2, MBAVEFRIEALRA —Fh LBz H R, FRmwhnk)

FHRLH

VRt & KRB A B AT REELE -, E—HohiitE, ¥
T bR e R AT AR . 58 o BT, THEAN(AE AR H SRR .

HRNMBER-ANERFENER, BROUWAXRERN. C++IEFNTFLE
Sr—— R R IR A oy —— F B TR RIS BM AR . FERR PR
ATCHE T B S ARy . BL/EE —¥ o s RALBE S X AR, SR
BEGR R, WOIGRERERIBES HA B LACHE TR THE.

— BFRART FER R, Rh o A A 21 A LA R R AR T LA T A] 5 R ik 235
MR B IR A CHIEE, o, VREFSIRE I A (A5 — AN A FA LA B (e Bk Jo7 38 S A Sk G
B AHH PERVBEMEINR, ’

REABERFLCr+BER, BERNEBSHICENERAE-TEEZNMEEDH
R, REMSHERRENEL, S8, BHnF28o25I ABHMES . M5
F LB “§39.4.3/8577 WykEE, EIRMESIARSCAM THSSTI, HHAEHE39.4.3/h
W sy (ARAFBAX L LH/NE RIS, &CGRE) . 4% —KREXA
MR, RMNSRAEMEFIRY, R ESWEIIFT5IRRIER, LLEHRE—
NER,

AHHs—3 (BRTEE—RES) LA~/ FRA “Details” HI/MTHRE, LHEX—
HERARE: EOTUERMNEZENTBBSHIET, FALEMERE — L8
R, BRIVAAKREE —KREETRXEELE. BUAKERNZIXLNE,
fto A TS 2 W UATE B 2 B

viii

FHHRAHRAAEM TR EE EESHEA TIESMENEER S, FRERRS
B EfER LAY .

BAREMZEFEELIER

B—ARXRTRENBBOEGRERF, ABMAF. b T RX LR R
TAER, BRTAEUHFEN LT elPMNEREHF LR, SN REILELEA, mmEH
KRHFEHLAW HI. XEkRE, FOREIXLEXFR, BAT BRI EFTBURER AT
RER A MEWIRY . AR URIE A 5l 40] Jm iE FOPAT — AN CH+B 7, i Ui http://www.
acceleratedcpp.com S Z AP EAVHA . WANNS AR HERF ML, AZEK Tizf7C++
BAFILHIFR IR B . ZM SRt T —LeHL 88 AT iR AR BIRR i R AR DL B fth — 28R
WFBRREABAIE B

Hoigt

BATUAT ALRARHE, BRBNABRATREEA ., ABRRRRCRE FE
H3hFLLA T #HFa A : Robert Berger, Dag Briick, Adam Buchsbaum, Stephen Clamage,
Jon Kalb, Jeffrey Oldham, David Slayton, Bjarne Stroustrup, Albert Tenbusch, Bruce
Tetelman[), }z Clovis Tondo, Addison-WesleyH 4% TIEANREZS S TABHIHKR TIE,
F A48 (9 Tyrrell Albaugh, Bunny Ames, Mike Hendrickson, Deborah Lafferty,
Cathy Ohalal’) }z Simone Payment%, Alexander TsirisH&:4% T 13.2.27% fh {075 i im R ,
BJa, BB mBTRRROBEEROA, XEZIHKE A O ZHRNIRERNF4
AR BT AW ik BAr sk i A AT 1B S Bl i 7 A= Y o

Andrew Koenig
Barbara E. Moo
F#HEFEHMNF 7]
200046 A

Preface

A new approach to C++ programming

We assume that you want to learn quickly how to write useful C++ programs. Therefore,
we start by explaining the most useful parts of C++. This strategy may seem obvious
when we put it that way, but it has the radical implication that we do not begin by teach-
ing C, even though C++ builds on C. Instead, we use high-level data structures from the
start, explaining only later the foundations on which those data structures rest. This
approach lets you to begin writing idiomatic C++ programs immediately.

Our approach is unusual in another way: We concentrate on solving problems, rather
than on exploring language and library features. We explain the features, of course, but
we do so in order to support the programs, rather than using the programs as an excuse
to demonstrate the features.

Because this book teaches C++ programming, not just features, it is particularly useful
for readers who already know some C++, and who want to use the language in a more
natural, effective style. Too often, people new to C++ learn the language mechanics with-
out learning how to apply the language to everyday problems.

Our approach works—for beginners and experienced programmers

We used to teach a week-long intensive C++ course every summer at Stanford University.
We originally adopted a traditional approach to that course: Assuming that the students
already knew C, we started by showing them how to define classes, and then moved sys-
tematically through the rest of the language. We found that our students would be con-
fused and frustrated for about two days—until they had learned enough that they could
start writing useful programs. Once they got to that point, they learned quickly.

When we got our hands on a C++ implementation that supported enough of what was
then the brand-new standard library, we overhauled the course. The new course used the
library right from the beginning, concentrated on writing useful programs, and went into
details only after the students had learned enough to use those details productively.

The results were dramatic: After one day in the classroom, our students were able to
write programs that had taken them most of the week in the old course. Moreover, their
frustration vanished.

X Preface

Abstraction

Our approach is possible only because C++, and our understanding of it, has had time to
mature. That maturity has let us ignore many of the low-level ideas that were the main-
stay of earlier C++ programs and programmers.

The ability to ignore details is characteristic of maturing technologies. For example,
early automobiles broke down so often that every driver had to be an amateur mechanic.
It would have been foolhardy to go for a drive without knowing how to get back home
even if something went wrong. Today’s drivers don’t need detailed engineering knowl-
edge in order to use a car for transportation. They may wish to learn the engineering
details for other reasons, but that’s another story entirely.

We define abstraction as selective ignorance—concentrating on the ideas that are rele-
vant to the task at hand, and ignoring everything else—and we think that it is the most
important idea in modern programming. The key to writing a successful program is
knowing which parts of the problem to take into account, and which parts to ignore.
Every programming language offers tools for creating useful abstractions, and every suc-
cessful programmer knows how to use those tools.

We think abstractions are so useful that we’ve filled this book with them. Of course,
we don’t usually call them abstractions directly, because they come in so many forms.
Instead, we refer to functions, data structures, classes, and inheritance—all of which are
abstractions. Not only do we refer to them, but we use them throughout the book.

If abstractions are well designed and well chosen, we believe that we can use them
even if we don’t understand all the details of how they work. We do not need to be auto-
motive engineers to drive a car, nor do we need to understand everything about how C++
works before we can use it.

Coverage

If you are serious about C++ programming, you need to know everything in this book—
even though this book doesn’t tell you everything you need to know.

This statement is not as paradoxical as it sounds. No book this size can contain every-
thing you'll ever need to know about C++, because different programmers and applica-
tions require different knowledge. Therefore, any book that covers all of C++—such as
Stroustrup’s The C++ Programming Language (Addison-Wesley, 2000)—will inevitably tell
you a lot that you don’t need to know. Someone else will need it, even if you don't.

On the other hand, many parts of C++ are so universally important that it is hard to be
productive without understanding them. We have concentrated on those parts. It is pos-
sible to write a wide variety of useful programs using only the information in this book.
Indeed, one of our reviewers, who is the lead programmer for a substantial commercial
system written in C++, told us that this book covers essentially all of the facilities that he
uses in his work.

Using these facilities, you can write true C++ programs—not C++ programs in the style
of C, or any other language. Once you have mastered the material in this book, you will
know enough to figure out what else you want to learn, and how to go about it. Amateur

Preface Xi

telescope makers have a saying that it is easier to make a 3-inch mirror and then to make a
6-inch mirror than to make a 6-inch mirror from scratch.

We cover only standard C++, and ignore proprietary extensions. This approach has
the advantage that the programs that we teach you to write will work just about any-
where. However, it also implies that we do not talk about how to write programs that
run in windowing environments, because such programs are invariably tied to a specific
environment, and often to a specific vendor. If you want to write programs that will work
only in a particular environment, you will have to turn elsewhere to learn how to do so—
but don’t put this book down quite yet! Because our approach is universal, you will be
able to use everything that you learn here in whatever environments you use in the
future. By all means, go ahead and read that book about GUI applications that you were
considering—but please read this one first.

A note to experienced C and C++ programmers

When you learn a new programming language, you may be tempted to write programs in
a style that is familiar from the languages that you already know. Our approach seeks to
avoid that temptation by using high-level abstractions from the C++ standard library right
from the start. If you are already an experienced C or C++ programmer, this approach
contains some good news and some bad news—and it’s the same news.

The news is that you are likely to be surprised at how little of your knowledge will
help you understand C++ as we present it. You will have more to learn at first-than you
might expect (which is bad), but you will learn more quickly than you might expect
(which is good). In particular, if you already know C++, you probably learned first how
to program in C, which means that your C++ programming style is built on a C founda-
tion. There is nothing wrong with that approach, but our approach is so different that we
think you'll see a side of C++ that you haven't seen before.

Of course, many of the syntactic details will be familiar, but they're just details. We
treat the important ideas in a completely different order from what you've probably
encountered. For example, we don’t mention pointers or arrays until Chapter 10, and
we're not even going to discuss your old favorites, printf and malloc, at all. On the
other hand, we start talking about the standard-library string class in Chapter 1. When
we say we're adopting a new approach, we mean it! T

Structure of this book

You may find it convenient to think of this book as being in two parts. The first part,
through Chapter 7, concentrates on programs that use standard-library abstractions. The
second part, starting with Chapter 8, talks about defining your own abstractions.
Presenting the library first is an unusual idea, but we think it's right. Much of the C++
language—especially the harder parts—exists mostly for the benefit of library authors.
Library users don’t need to know those parts of the language at all. By ignoring those
parts of the language until the second part of the book, we make it possible to write useful
C++ programs much more quickly than if we had adopted a more conventional approach.

Xii Preface

Once you have understood how to use the library, you will be ready to learn about the
low-level facilities on which the library is built, and how to use those facilities to write
your own libraries. Moreover, you will have a feeling for how to make a library useful,
and when to avoid writing new library code altogether.

Although this book is smaller than many C++ books, we have tried to use every impor-
tant idea at least twice, and key ideas more than that. As a result, many parts of the book
refer to other parts. These references look like §39.4.3/857, which refers to text on page
857 that is part of section 39.4.3—or at least it would do so if this book had that many sec-
tions or pages. The first time we explain each idea, we mention it in bold italic type to
make it easy to find and to call your attention to it as an important point.

Every chapter (except the last) concludes with a section called Details. These sections
serve two purposes: They make it easy to remember the ideas that the chapter introduced,
and they cover additional, related material that we think you will need to know eventu-
ally. We suggest that you skim these sections on first reading, and refer back to them later
as needed.

The two appendices summarize and elucidate the important parts of the language and
library at a level of detail that we hope will be useful when you are writing programs.

Getting the most out of this book

Every book about programming includes example programs, and this one is no different.
In order to understand how these programs work, there is no substitute for running them
on a computer. Such computers abound, and new ones appear constantly—which means
that anything we might say about them would be inaccurate by the time you read these
words. Therefore, if you do not yet know how to compile and execute a C++ program,
please visit http: //www.acceleratedcpp.com and see what we have to say there.
We will update that website from time to time with information and advice about the
mechanics of running C++ programs. The site also offers machine-readable versions of
some of the example programs, and other information that you might find interesting.

Acknowledgments

We would like to thank the people without whom this book would have been impossible.
It owes much of its form to our reviewers: Robert Berger, Dag Briick, Adam Buchsbaum,
Stephen Clamage, Jon Kalb, Jeffrey Oldham, David Slayton, Bjarne Stroustrup, Albert
Tenbusch, Bruce Tetelman, and Clovis Tondo. Many people from Addison-Wesley partic-
ipated in its publication; the ones we know about are Tyrrell Albaugh, Bunny Ames, Mike
Hendrickson, Deborah Lafferty, Cathy Ohala, and Simone Payment. Alexander Tsiris
checked the Greek etymology in §13.2.2/236. Finally, the idea of starting with high-level
programs grew over many years, stimulated by the hundreds of students who have sat
through our courses and the thousands of people who have attended our talks.

Andrew Koenig Gillette, New Jersey
Barbara E. Moo June 2000

Preface

Chapter 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Chapter 1
1.1
1.2
1.3

Chapter 2
21
22
23
24
25
26
2.7

Getting started

Comments

#include

The main function

Curly braces

Using the standard library for output
The return statement

A slightly deeper look

Details

Working with strings
Input

Framing a name
Details

Looping and counting

The problem

Overall structure

Writing an unknown number of rows
Writing a row

The complete framing program
Counting

Details

Contents

Gt W WPNDNNF -

Xiv Contents

Chapter 3
34
3.2
33

Chapter 4
41
4.2
43
44
4.5
4.6

Chapter 5
5.1
52
5.3
5.4
55
5.6
5.7
5.8
59

Chapter 6
6.1
6.2
6.3
6.4
6.5

Chapter 7
7.1
72
7.3
74
75
7.6

Chapter 8
8.1
8.2
8.3
8.4
8.5

Working with batches of data
Computing student grades

Using medians instead of averages
Details

Organizing programs and data
Organizing computations
Organizing data

Putting it all together
Partitioning the grading program
The revised grading program
Details

Using sequential containers and analyzing strings
Separating students into categories

Iterators

Using iterators instead of indices

Rethinking our data structure for better performance
The list type

Taking strings apart

Testing our split function

Putting strings together

Details

Using library algorithms

Analyzing strings

Comparing grading schemes
Classifying students, revisited
Algorithms, containers, and iterators
Details

Using associative containers

Containers that support efficient look-up
Counting words

Generating a cross-reference table
Generating sentences

A note on performance

Details

Writing generic functions
What is a generic function?
Data-structure independence
Input and output iterators
Using iterators for flexibility
Details

35
35
41

51
51
61
65
68
70
71

75
75
79
82

85
87
90
91
96

101
101
110
116
120
121

123
123
124
126
129
136
137

139
139
143
150
152
153

Contents xv

Chapter 9 Defining new types 155
9.1 Student_info revisited 155

9.2 Class types 156

9.3 Protection 160

9.4 The student_info class 163

9.5 Constructors 164

9.6 Using the Student_info class 166

9.7 Details 167
Chapter 10 Managing memory and low-level data structures 169
10.1 Pointers and arrays 169
10.2 String literals revisited 176
10.3 Initializing arrays of character pointers 177
10.4 Arguments to main 179
10.5 Reading and writing files 180
10.6 Three kinds of memory management 182
10.7 Details 185
Chapter 11 Defining abstract data types 187
11.1 The Vec class 187
11.2 Implementing the Vec class 188
11.3 Copy control 195
114 Dynamic Vecs 202
11.5 Flexible memory management 203
11.6 Details 209
Chapter 12 Making class objects act like values 211
12.1 A simple string class 212
12.2 Automatic conversions 213
12.3 Str operations 214
124 Some conversions are hazardous 221
12.5 Conversion operators 222
12.6 Conversions and memory management 223
12.7 Details 225
Chapter 13 Using inheritance and dynamic binding 227
13.1 Inheritance 227
13.2 Polymorphism and virtual functions 232
13.3 Using inheritance to solve our problem 237
13.4 A simple handle class 243
13.5 Using the handle class 247
13.6 Subtleties 248

13.7 Details 250

xvi Contents

Chapter 14
14.1
14.2
14.3
144
14.5

Chapter 15
15.1
15.2
15.3

Chapter 16
16.1
16.2

Appendix A
Al
A2
A3
A4

Appendix B
B.1
B.2
B.3

Index

Managing memory (almost) automatically
Handles that copy their objects
Reference-counted handles

Handles that let you decide when to share data
An improvement on controllable handles
Details

Revisiting character pictures
Design

Implementation

Details

Where do we go from here?
Use the abstractions you have
Learn more

Language details
Declarations
Types
Expressions
Statements

Library summary
Input-output
Containers and iterators
Algorithms

253
254
260
263
264
268

269
269
278
288

291
291
293

295
295
299
305
308

311
311
314
322

325

0

Getting started

Let us begin by looking at a small C++ program:

// asmgll C++ program
#include <iostream>

int main()

{
std::cout << "Hello, world!" << std::endl;
return 0;

}

Programmers often refer to such a program as a Hello, world! program. Despite its
small size, you should take the time to compile and run this program on your computer
before reading further. The program should write

Hello, world!

on the standard output, which will typically be a window on your display screen. If you
have trouble, find someone who already knows C++ and ask for help, or consult our web-
site, http: //www.acceleratedcpp.com, for advice.

This program is useful because it is so simple that if you have trouble, the most likely
reasons are obvious typographical errors or misconceptions about how to use the imple-
mentation. Moreover, thoroughly understanding even such a small program can teach a
surprising amount about the fundamentals of C++. In order to gain this understanding,
we'll look in detail at each line of the program.

0.1 Comments
The first line of our program is
// asmall C++ program

The // characters begin a comment, which extends to the end of the line. The compiler
ignores comments; their purpose is to explain the program to a human reader. In this
book, we shall put the text of each comment in italic type, to make it easier for you to dis-
tinguish comments from other parts of the program.

