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Preface

A new approach to C++ programming

We assume that you want to learn quickly how to write useful C++ programs. Therefore,
we start by explaining the most useful parts of C++. This strategy may seem obvious
when we put it that way, but it has the radical implication that we do not begin by teach-
ing C, even though C++ builds on C. Instead, we use high-level data structures from the
start, explaining only later the foundations on which those data structures rest. This
approach lets you to begin writing idiomatic C++ programs immediately.

Our approach is unusual in another way: We concentrate on solving problems, rather
than on exploring language and library features. We explain the features, of course, but
we do so in order to support the programs, rather than using the programs as an excuse
to demonstrate the features.

Because this book teaches C++ programming, not just features, it is particularly useful
for readers who already know some C++, and who want to use the language in a more
natural, effective style. Too often, people new to C++ learn the language mechanics with-
out learning how to apply the language to everyday problems.

Our approach works—for beginners and experienced programmers

We used to teach a week-long intensive C++ course every summer at Stanford University.
We originally adopted a traditional approach to that course: Assuming that the students
already knew C, we started by showing them how to define classes, and then moved sys-
tematically through the rest of the language. We found that our students would be con-
fused and frustrated for about two days—until they had learned enough that they could
start writing useful programs. Once they got to that point, they learned quickly.

When we got our hands on a C++ implementation that supported enough of what was
then the brand-new standard library, we overhauled the course. The new course used the
library right from the beginning, concentrated on writing useful programs, and went into
details only after the students had learned enough to use those details productively.

The results were dramatic: After one day in the classroom, our students were able to
write programs that had taken them most of the week in the old course. Moreover, their
frustration vanished.
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Abstraction

Our approach is possible only because C++, and our understanding of it, has had time to
mature. That maturity has let us ignore many of the low-level ideas that were the main-
stay of earlier C++ programs and programmers.

The ability to ignore details is characteristic of maturing technologies. For example,
early automobiles broke down so often that every driver had to be an amateur mechanic.
It would have been foolhardy to go for a drive without knowing how to get back home
even if something went wrong. Today’s drivers don’t need detailed engineering knowl-
edge in order to use a car for transportation. They may wish to learn the engineering
details for other reasons, but that’s another story entirely.

We define abstraction as selective ignorance—concentrating on the ideas that are rele-
vant to the task at hand, and ignoring everything else—and we think that it is the most
important idea in modern programming. The key to writing a successful program is
knowing which parts of the problem to take into account, and which parts to ignore.
Every programming language offers tools for creating useful abstractions, and every suc-
cessful programmer knows how to use those tools.

We think abstractions are so useful that we’ve filled this book with them. Of course,
we don’t usually call them abstractions directly, because they come in so many forms.
Instead, we refer to functions, data structures, classes, and inheritance—all of which are
abstractions. Not only do we refer to them, but we use them throughout the book.

If abstractions are well designed and well chosen, we believe that we can use them
even if we don’t understand all the details of how they work. We do not need to be auto-
motive engineers to drive a car, nor do we need to understand everything about how C++
works before we can use it.

Coverage

If you are serious about C++ programming, you need to know everything in this book—
even though this book doesn’t tell you everything you need to know.

This statement is not as paradoxical as it sounds. No book this size can contain every-
thing you'll ever need to know about C++, because different programmers and applica-
tions require different knowledge. Therefore, any book that covers all of C++—such as
Stroustrup’s The C++ Programming Language (Addison-Wesley, 2000)—will inevitably tell
you a lot that you don’t need to know. Someone else will need it, even if you don't.

On the other hand, many parts of C++ are so universally important that it is hard to be
productive without understanding them. We have concentrated on those parts. It is pos-
sible to write a wide variety of useful programs using only the information in this book.
Indeed, one of our reviewers, who is the lead programmer for a substantial commercial
system written in C++, told us that this book covers essentially all of the facilities that he
uses in his work.

Using these facilities, you can write true C++ programs—not C++ programs in the style
of C, or any other language. Once you have mastered the material in this book, you will
know enough to figure out what else you want to learn, and how to go about it. Amateur
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telescope makers have a saying that it is easier to make a 3-inch mirror and then to make a
6-inch mirror than to make a 6-inch mirror from scratch.

We cover only standard C++, and ignore proprietary extensions. This approach has
the advantage that the programs that we teach you to write will work just about any-
where. However, it also implies that we do not talk about how to write programs that
run in windowing environments, because such programs are invariably tied to a specific
environment, and often to a specific vendor. If you want to write programs that will work
only in a particular environment, you will have to turn elsewhere to learn how to do so—
but don’t put this book down quite yet! Because our approach is universal, you will be
able to use everything that you learn here in whatever environments you use in the
future. By all means, go ahead and read that book about GUI applications that you were
considering—but please read this one first.

A note to experienced C and C++ programmers

When you learn a new programming language, you may be tempted to write programs in
a style that is familiar from the languages that you already know. Our approach seeks to
avoid that temptation by using high-level abstractions from the C++ standard library right
from the start. If you are already an experienced C or C++ programmer, this approach
contains some good news and some bad news—and it’s the same news.

The news is that you are likely to be surprised at how little of your knowledge will
help you understand C++ as we present it. You will have more to learn at first-than you
might expect (which is bad), but you will learn more quickly than you might expect
(which is good). In particular, if you already know C++, you probably learned first how
to program in C, which means that your C++ programming style is built on a C founda-
tion. There is nothing wrong with that approach, but our approach is so different that we
think you'll see a side of C++ that you haven't seen before.

Of course, many of the syntactic details will be familiar, but they're just details. We
treat the important ideas in a completely different order from what you've probably
encountered. For example, we don’t mention pointers or arrays until Chapter 10, and
we're not even going to discuss your old favorites, printf and malloc, at all. On the
other hand, we start talking about the standard-library string class in Chapter 1. When
we say we're adopting a new approach, we mean it! T

Structure of this book

You may find it convenient to think of this book as being in two parts. The first part,
through Chapter 7, concentrates on programs that use standard-library abstractions. The
second part, starting with Chapter 8, talks about defining your own abstractions.
Presenting the library first is an unusual idea, but we think it's right. Much of the C++
language—especially the harder parts—exists mostly for the benefit of library authors.
Library users don’t need to know those parts of the language at all. By ignoring those
parts of the language until the second part of the book, we make it possible to write useful
C++ programs much more quickly than if we had adopted a more conventional approach.
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Once you have understood how to use the library, you will be ready to learn about the
low-level facilities on which the library is built, and how to use those facilities to write
your own libraries. Moreover, you will have a feeling for how to make a library useful,
and when to avoid writing new library code altogether.

Although this book is smaller than many C++ books, we have tried to use every impor-
tant idea at least twice, and key ideas more than that. As a result, many parts of the book
refer to other parts. These references look like §39.4.3/857, which refers to text on page
857 that is part of section 39.4.3—or at least it would do so if this book had that many sec-
tions or pages. The first time we explain each idea, we mention it in bold italic type to
make it easy to find and to call your attention to it as an important point.

Every chapter (except the last) concludes with a section called Details. These sections
serve two purposes: They make it easy to remember the ideas that the chapter introduced,
and they cover additional, related material that we think you will need to know eventu-
ally. We suggest that you skim these sections on first reading, and refer back to them later
as needed.

The two appendices summarize and elucidate the important parts of the language and
library at a level of detail that we hope will be useful when you are writing programs.

Getting the most out of this book

Every book about programming includes example programs, and this one is no different.
In order to understand how these programs work, there is no substitute for running them
on a computer. Such computers abound, and new ones appear constantly—which means
that anything we might say about them would be inaccurate by the time you read these
words. Therefore, if you do not yet know how to compile and execute a C++ program,
please visit http: //www.acceleratedcpp.com and see what we have to say there.
We will update that website from time to time with information and advice about the
mechanics of running C++ programs. The site also offers machine-readable versions of
some of the example programs, and other information that you might find interesting.
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Getting started

Let us begin by looking at a small C++ program:

// asmgll C++ program
#include <iostream>

int main()

{
std::cout << "Hello, world!" << std::endl;
return 0;

}

Programmers often refer to such a program as a Hello, world! program. Despite its
small size, you should take the time to compile and run this program on your computer
before reading further. The program should write

Hello, world!

on the standard output, which will typically be a window on your display screen. If you
have trouble, find someone who already knows C++ and ask for help, or consult our web-
site, http: //www.acceleratedcpp.com, for advice.

This program is useful because it is so simple that if you have trouble, the most likely
reasons are obvious typographical errors or misconceptions about how to use the imple-
mentation. Moreover, thoroughly understanding even such a small program can teach a
surprising amount about the fundamentals of C++. In order to gain this understanding,
we'll look in detail at each line of the program.

0.1 Comments
The first line of our program is
// asmall C++ program

The // characters begin a comment, which extends to the end of the line. The compiler
ignores comments; their purpose is to explain the program to a human reader. In this
book, we shall put the text of each comment in italic type, to make it easier for you to dis-
tinguish comments from other parts of the program.



