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Preface

Vacuolar-type H*-ATPases (V-ATPases), which are found within the
membranes of many organelles, such as endosomes, lysosomes,
and secretory vesicles in eukaryotic cells, catalyze ATP hydrolysis
to transport protons across intracellular and plasma membranes
Plasma membrane HT-ATPases, P-ATPases (E1E2-ATPases), which
are found in bacteria, fungi eukaryotic plasma membranes and
organelles, function to transport a variety of different ions across
membranes. This book is dedicated to the scope of V-ATPases and
P-ATPases by leading experts in the area of basic science and clinical
medicine. This book presents recent findings on the structure and
function of V-ATPase in glucose promoting assembly and in glucose
signaling. It also describes the regulatory mechanisms of V-ATPases
in yeast cells, neural stem cells, kidney cells, and cancer cells and
under diabetic conditions. In addition, information on the role of V-
ATPases on insulin secretion and cancer chemotherapy is also given
in this book It also illustrates the activation of P-ATPases through
glucose-induced calcium signaling in Saccharomyces cerevisiae yeast
cells and the stimulation of proton-potassium pump (H"-K*-
ATPase) by glucose in kidney cells.

V-ATPases are composed of two domains: the ATP hydrolysis V1
domain (subunits A, B, C, D, E, F, G, H) and the proton translocation
VO domain (subunits a, d, e, ¢, ¢, ¢” in yeast and subunits a, d, e, ¢, ¢”
and Ac45 in mammals). The activity of V-ATPase is largely controlled
by the assembly state of the complex, which consists of two domains.
Glucose has been shown to play a critical role in both the functional
structure and activity of V-ATPase and, as discussed in this book,
has also been shown to promote V-ATPase assembly and activation.
There is much evidence to suggest that the glucosemodulated,
glycolytic enzyme aldolase mediates the assembly, expression, and
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activity of V-ATPase. Glucose signaling involves a number of different
regulatory proteins including RAVE and protein kinase A, in order
to control the assembly and disassembly of V-ATPase Glucose
has also been shown to regulate cytosolic pH-promoted V-ATPase
assembly in the field of nutrient sensing and signaling. Studies on
cancer cells have shown that glucose withdrawal initiates reversible
dissociation of V-ATPase, thereby shutting down its activity and
leading to cell death; this suggests that glucose regulates V-ATPase in
cancer cells.

It is also known that V-ATPase assembly can be regulated
by other mechanisms such as angiotensin II or through certain
extracellular factors. Angiotensin II is a peptide hormone that plays
an endocrinological role in the regulation of blood pressure as
well as fluid and electrolyte homeostasis. Angiotensin II is the
major bioactive product of the renin-angiotensin system and it
is involved in almost every pathophysiological process implicated
in the development of diabetic nephropathy. Blocking the action
of angiotensin Il is a critical component in every therapeutic
regimen designed to prevent and treat diabetic nephropathy. A
study included in this book discusses how angiotensin II regulates
the assembly of VO and V1 domains through activation of P38
MAPKinase and PI3K pathways to form the active complex of V-
ATPase. The activation of the PI3K/Akt pathway is responsible
for glucose metabolism including glucose uptake and glycogenesis.
It has been noted that V-ATPase assembly can also be regulated
by other extracellular conditions through secondary messenger
systems.

Several isoforms of the “a” subunit of V-ATPase have been
identified including two “a” isoforms (Vph1p and Stv1p) that have
been discovered in yeast. Vphlp is located in V-ATPase complexes
of the vacuole while Stvlp is located in V-ATPase complexes of
the Golgi and endosomes. Four different isoforms (al-a4), encoded
by different genes have been identified in mammalian cells; a1l
(neural), a2 (endothelial and neural) a3 (osteoclasts, pancreatic -
cells and premature melanosomes), and a4 (renal and epididymis).
The variants of the “a”subunit are generated by alternative splicing,
with al-I and IV being specifically expressed in the neurons of the
brain while a3-III is expressed in the heart and lungs. Both a4-I and
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a4-11 have been found to be expressed in the kidneys, lungs, and
testis. Additionally, a4-I is also located in heart and skeletal muscle
while a4-1I can be located in liver. The diversity of the “a” subunit
isoforms is not only important for tissue specificity and targeting
different membrane compartments but it could also result in the
generation of V-ATPases with different functional properties.

Three chapters of this book discuss the functional activities
of the isoforms of the “a” subunit of V-ATPase in cancer-related
inflammation, pancreatic B-cells, and yeast cells. The a2 isoform of
V-ATPase has been shown to be important in tumor progression and
metastases. The studies discussed in this book suggest that the a2
isoform has the capacity to redirect its activity and to function as
either an ATPase or to control acid hydrolysis on the cell surface.
Research conducted on endocrine tissues has shown that mutant
mice lacking the a3 isoform of V-ATPase have a significantly lower
level of plasma insulin than their wild-type groups. This suggests
that the a3 isoform of V-ATPase has a regulatory function in the
exocytosis of insulin secretion. In yeast, key gluconeogenic enzymes
such as fructose-1,6-bisphosphatase (FBPase), phosphoenolpyru-
vatecarboxykinase, malate dehydrogenase, and isocitratelyase are
degraded in the vacuole during glucose refeeding. This prevents
energy futile cycles that are detrimental to cells. Vacuole import
and degradation (Vid) vesicles are intermediate vesicles that carry
gluconeogenic enzymes to the vacuole. Stvlp and Vphlp of the V-
ATPase are required for FBPase degradation. Vphlp is required
for both Vid vesicles and vacuoles, while Stv1p is required for the
proper function of the Vid vesicles.

V-ATPase plays an important role in both the cell surface and
vesicular trafficking signaling mechanisms for cancer cells and
cells under diabetic conditions. V-ATPase is believed to be largely
responsible for supporting cancer growth by controling related
inflammatory processes and subsequent angiogenesis. V-ATPase
acts as a modulator of chemokines and cytokine expression through
areleased peptide, which is the N-terminal portion of the a2 isoform
of a V-ATPase V-ATPases have also been shown to be related to
tumor pH control, metastasis, tumor cell growth and survival, and
multidrug resistance (MDR), and also possess possible therapeutic
applications associated with the use of specific V-ATPase inhibitors.

xvii
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In the kidney, the V-ATPase E-subunit interacts directly with
the glycolytic enzyme aldolase while the a-subunit interacts with
phosphofructokinase-1, thereby providing a functional coupling
of V-ATPase with the glycolytic pathway.This book discusses the
localization and function of renal V-ATPases and their role in
intracellular pH (pHi) regulation, transepithelial proton transport
and acid-base homeostasis, in addition to providing an overview of
V-ATPase in distal renal tubular acidosis and diabetes.

Diabetic nephropathy is a progressive kidney disease caused by
angiopathy of capillaries in the kidney glomeruli, which leads to
end-stage renal disease (ESRD) and finally to kidney failure. One
of the many aspects of the late stages of diabetic nephropathy is
the diminished protein reabsorption by proximal tubules via the
megalin/cubilin-mediated endosomal/lysosomal protein degrada-
tive pathway that leads to proteinuria. V-ATPase, cytohesins and
Arf-family GTP-binding proteins (Arfs) are essential for vesicular
trafficking of receptors and their signaling along endocytic pathway
of eukaryotic cells. A study in this book has demonstrated a novel
specific interaction of cytohesin-2 with V-ATPase and aldolase in the
V-ATPase/Arf6/cytohesin-2/aldolase complex on early endosomes.
High glucose levels may regulate the activities of the components of
this complex and trafficking of receptors in the protein degradative
pathway, and thus, contribute to the development of early stages of
diabetic nephropathy.

The role of V-ATPase has also been examined in the regulation of
phosphate transporters in rodents. The type II sodium phosphate
cotransporter, Npt2a (SLC34A1), is one of three known sodium-
coupled phosphate transporters responsible for the reabsorption of
filtered phosphate from the lumen of the proximal renal tubule. It
has been found that V-ATPases regulate Npat2a at multiple sites.
Apical membrane V-ATPase which is activated during metabolic
acidosis may contribute to the phosphaturia associated with
metabolic acidosis by decreasing Npt2a transport function. V-
ATPases are critical for the forward trafficking of Npt2a as well
as physiological regulation of the Npt2a degradation pathway via
the transport of proteins from the endosome to the lysosome and
ultimately the degradation by lysosomal enzymes. These findings
provide a possible link between Npt2a in the regulation of serum
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phosphorus concentration and the risk of cardiovascular renal
diseases.

Another study in this book shows that in neural stem cells of
the mouse brain, V-ATPase is crucial for the transduction of Notch
signaling and plays an important role for endosome acidification
and endocytosis in signal transduction during neural stem cell
differentiation and brain development.

The P-ATPases are a large group of transporter family-related ion
and lipid pumps that can be divided into five subfamilies. Ht-Kt-
ATPase in animal cells belongs to the type IIC subfamily while the
P-ATPase is classified as type III in fungi. The relationship between
glucose-induced calcium signaling and the activation of the P-ATPase
in S. cerevisiae cells is discussed in this book We have also observed
that glucose activates H*-K*-ATPase in kidney epithelial cells (our
unpublished results).

We would like to thank our contributors and colleagues from
around the world who have devoted a significant amount of time and
effort into making this book as accurate and as useful as possible.
Without their contributions, this project could not have possibly
been as successful. Their expertise in biochemistry, cell biology, and
pathophysiology has greatly added to our ability to bring the most
recent results to our readers. I would also like to thank Ms. Shivani
Sharma, Pan Stanford Publishing, for her professional assistance.
We sincerely hope our readers will find this handbook beneficial
and that the knowledge gained from the book will aid their future
endeavors.

Suguru Nakamura
Winter 2013
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