
Unified Growth Theory

Oded Galor

Unified Growth Theory

Oded Galor

© 2011 by Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

Jacket illustration: Time Goes By. 2007, GIMP-created image, © Manuel Lao

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Galor, Oded, date.

Unified growth theory / Oded Galor.

p. cm.

Includes bibliographical references and index. ISBN 978-0-691-13002-6 (hardback : alk, paper)

1. Economic development. 2. Technological innovations—Economic aspects.

I. Title.

HD75.G348 2011

338.9001—dc22

2010043076

British Library Cataloging-in-Publication Data is available

This book was composed in Times New Roman and Bell Gothic using ZzTEX by Princeton Editorial Associates, Inc., Scottsdale, Arizona.

Printed on acid-free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Unified Growth Theory

此为试读,需要完整PDF请访问: www.ertongbook.com

Striving toward unification and simplification of the premises of the theory as a whole.

-Albert Einstein

This book is devoted to Unified Growth Theory—an intellectual endeavor conceived and developed by the author over the course of 20 years of research. The theory explores the fundamental forces that have generated the remarkable transition of the world economy from an epoch of stagnation to an era of sustained economic growth and triggered the emergence of the vast disparity in the standards of living across the globe.

The research agenda has been stimulated by the author's conviction that the understanding of comparative economic development would be hindered unless growth theory would reflect the principal growth engines over the entire process of development and would capture the central role played by historical and prehistorical factors in the prevailing disparity across countries and regions. Moreover, it was instigated by the recognition that the hurdles faced by less developed economies in reaching an era of sustained growth would remain obscure unless the forces that facilitated this transition among the currently developed economies would be thoroughly explored.

Chapter 1 introduces the empirical and theoretical motivations of the quest for a unified theory of economic growth. It examines the fundamental inconsistencies of non-unified growth theory with the process of development as a whole, underlines the importance of the establishment of a unified theory of economic growth, and describes the central hypotheses of Unified Growth Theory and their implications for comparative economic development.

Chapter 2 provides an overview of the three fundamental regimes that have characterized the process of development over the course of human history: the Malthusian Epoch, the Post-Malthusian Regime, and the Modern Growth Regime. It explores the forces that have generated the transition from stagnation to growth and have contribued to the emergence of the vast inequality across countries.

Chapter 3 develops the foundations of the influential Malthusian theory and examines its predictions regarding the evolution of population and income per capita in the pre-industrial era of human history. The analysis explores the hypothesis that although the growth of income per capita was minuscule during

the Malthusian Epoch, the dynamism in population and technology over this period was instrumental for the emergence of economies from the Malthusian Epoch.

Chapter 4 examines the triggers for the onset of the demographic transition that has swept the world since the end of the nineteenth century and has been identified as one of the prime forces in the movement from stagnation to an era of sustained economic growth. The chapter explores various mechanisms that have been proposed as possible triggers for the demographic transition, assessing their empirical plausibility and significance in understanding the transition from stagnation to growth.

Chapter 5 develops the foundations of Unified Growth Theory. It underlines the significance as well as the intellectual challenge associated with the establishment of a unified theory of economic growth that captures each of the central phases in the process of development while orchestrating an endogenous transition across these distinct regimes. The chapter highlights the fundamental building blocks of Unified Growth Theory and their role in generating a dynamical system that accounts for (a) the epoch of Malthusian stagnation that has characterized most of human history; (b) the escape from the Malthusian trap and the associated spike in the growth rates of income per capita and population; (c) the emergence of human capital formation in the process of development; (d) the onset of the demographic transition; and (e) the emergence of the contemporary era of sustained economic growth.

Chapter 6 derives the implications of Unified Growth Theory for comparative economic development across the globe. It explores the role of cultural, institutional, and geographical factors in the differential pace of transition from stagnation to growth and the emergence of the contemporary disparity across countries. Furthermore, it establishes the persistent effect that deep-rooted factors (e.g., biogeographical endowments and migratory distance from the cradle of humanity in East Africa) have had on the course of comparative economic development from the dawn of human civilization to the modern era, and it examines the implications of Unified Growth Theory for understanding the origins of multiple growth regimes and convergence clubs.

Chapter 7 explores the dynamic interaction between human evolution and the process of economic development. It advances the hypothesis that during the Malthusian Epoch, when the subsistence consumption constraint affected the vast majority of the population, the forces of natural selection complemented the growth process and played a significant role in the transition of the world economy from stagnation to growth.

Finally, Chapter 8 offers some concluding remarks about the achievements of Unified Growth Theory thus far and the looming challenges in the exploration of the role of historical and prehistorical factors in contemporary economic development, as well as in the analysis of the interaction between human evolution and the process of development.

The philosophical foundations of this research agenda have been outlined by the author in his interview by Brian Snowdon (2008), "Towards a Unified Theory of Economic Growth." The theory was the subject of the author's Kuznets Lecture titled "Unified Growth Theory and Comparative Economic Development" (Yale University, 2009), Klein Lecture titled "Comparative Economic Development: Insights from Unified Growth Theory" (Osaka, 2008), opening lecture of the Israeli Economic Association Annual Meeting titled "From Stagnation to Growth" (Ma'ale Hahmisha, Israel, 2003), a keynote lecture at the DEGIT Annual Meeting (Vienna, 2001), and the keynote lecture of the Annual T2M Conferences (Paris, 2000). In addition, the theory was the focus of the author's lecture series for the Danish Doctoral Program (Copenhagen, 2008), the Minerva Summer Workshop in Economic Growth (Jerusalem, 2008), the International Monetary Fund Training Program (2006 and 2008), the Center for Economic Policy Research Summer Workshop in Economic History (Florence, 2007), and the Dutch Joint Doctoral Program (Groningen, 2000).

The research that led to this book has greatly benefited from the author's collaborations with Quamrul Ashraf, Stelios Michalopoulos, Omer Moav, Andrew Mountford, Dietrich Vollrath, and David Weil, and from extensive discussions with Carl-Johan Dalgaard, Peter Howitt, Ross Levine, and Yona Rubinstein. In addition, this research has profited from the interaction with doctoral students who attended the author's courses at Brown University, Providence, Rhode Island; the Hebrew University of Jerusalem; and the Massachusetts Institute of Technology, Cambridge, Massachusetts, and researchers who attended dozens of the author's lectures on segments of this book around the globe. In particular, the author is grateful to Charles Horioka and the members of the Institute of Social and Economic Research at Osaka University for fruitful discussions in the course of the Klein Lecture, and to Tim Guinnane, Mark Rosenzweig, Paul Schultz, and other members of the Growth Center at Yale University, New Haven, Connecticut, for stimulating discussions in the course of the Kuznets Lecture.

In addition, the final version of the manuscript benefited from numerous suggestions by William Fallon, Martin Fiszbein, Martin Guzman, Casper Hansen, Cory Harris, Mariko Klasing, Lars Lønstrup, Ryan Miller, Kuni Natsuki, Ehud Schwammenthal, Sarah Stein, and Harvey Stephenson and invaluable comments by anonymous reviewers, Boris Gershman, and Gareth Olds. Finally, support of the National Science Foundation through grants SBR-9709941, SES-0004304, and SES-0921573 and the Israel Science Foundation through grants 0341240, 848/00, and 795/03 for various segments of this research is gratefully acknowledged.

Providence, Rhode Island, January 2011

Contents

Pref	face	xv
	PTER 1 oduction	1
1.1	Toward a Unified Theory of Economic Growth	3
1.2	Origins of Global Disparity in Living Standards	6
	1.2.1 Catalysts for the Engine of Transition from Stagnation to Growth	6
	1.2.2 Persistence of Prehistorical Biogeographical Conditions	7
	1.2.3 Convergence Clubs	8
	PTER 2 m Stagnation to Growth	9
2.1	The Malthusian Epoch	10
	2.1.1 Stagnation of Income per Capita in the Long Run	11
	2.1.2 Population Dynamism	12
	2.1.3 Fertility and Mortality	14
	2.1.4 Fluctuations in Income and Population	15
	2.1.5 Technological Progress	16
	2.1.6 Main Characteristics of the Epoch	17
2.2	The Post-Malthusian Regime	17
	2.2.1 Take-off in Income per Capita	18
	2.2.2 Spike in Population Growth	18
	2.2.3 Fertility and Mortality	23
	2.2.4 Industrialization and Urbanization	25
	2.2.5 Globalization and the Pace of Industrialization	27
	2.2.6 Central Features of the Regime	29

viii • Contents

2.3	Industrialization and Human Capital Formation	30
	2.3.1 Industrial Demand for Education	31
	2.3.2 Land Concentration and Human Capital Formation	37
	2.3.3 Land Reforms and Education Reforms	39
	2.3.4 Political and Education Reforms	42
	2.3.5 Human Capital Formation in Less Developed Economies	45
	2.3.6 Main Insights	45
2.4	The Demographic Transition	46
	2.4.1 Decline in Population Growth	46
	2.4.2 Fertility Decline	49
	2.4.3 Mortality Decline	51
	2.4.4 Life Expectancy	52
	2.4.5 Central Characteristics	54
2.5	The Modern Growth Regime	55
	2.5.1 Rapid Industrialization and Human Capital Formation	55
	2.5.2 Sustained Growth of Income per Capita	57
	2.5.3 Divergence in Income and Population across the Globe	57
	2.5.4 Insights for Comparative Development	64
2.6	Concluding Remarks	65
	PTER 3 Malthusian Theory	67
	•	
3.1	The Basic Structure of the Model	68
	3.1.1 Production	69
	3.1.2 Preferences and Budget Constraints	69
	3.1.3 Optimization	70
3.2	The Evolution of the Economy	70
	3.2.1 Population Dynamics	70
	3.2.2 The Time Path of Income per Worker	72

3.3	Testable Predictions	74
3.4	Empirical Framework	74
	3.4.1 Empirical Strategy	74
	3.4.2 The Data	77
	3.4.3 The Neolithic Revolution and Technological Advancement	78
	3.4.4 Basic Regression Model	79
3.5	Cross-Country Evidence	80
	3.5.1 Population Density in 1500 CE	81
	3.5.2 Population Density in Earlier Historical Periods	86
	3.5.3 Income per Capita versus Population Density	92
	3.5.4 Effect of Technological Sophistication	96
	3.5.5 Robustness to Technology Diffusion and Geographical Features	103
	3.5.6 Rejection of Alternative Theories	105
3.6	Concluding Remarks	108
3.7	Appendix	110
	3.7.1 First-Stage Regressions	110
	3.7.2 Variable Definitions and Sources	110
200000	APTER 4 cories of the Demographic Transition	115
4.1	The Rise in Income per Capita	116
	4.1.1 The Theory and Its Testable Predictions	116
	4.1.2 The Evidence	118
4.2	The Decline in Infant and Child Mortality	120
	4.2.1 The Central Hypothesis	120
	4.2.2 Evidence	121
4.3	The Rise in Demand for Human Capital	123
	4.3.1 The Theory	125
	4.3.2 Evidence: Education and the Demographic Transition	127
	4.3.3 Quantity-Quality Trade-off in the Modern Era	129

Contents • ix

x • Contents

4.4	The Rise in Demand for Human Capital: Reinforcing Mechanisms	130
	4.4.1 The Decline in Child Labor	131
	4.4.2 The Rise in Life Expectancy	131
	4.4.3 Evolution of Preferences for Offspring Quality	132
4.5	The Decline in the Gender Gap	132
	4.5.1 The Theory and Its Testable Predictions	133
	4.5.2 The Evidence	135
4.6	The Old-Age Security Hypothesis	136
4.7	Concluding Remarks	136
4.8	Appendix	138
	4.8.1 Optimal Investment in Child Quality	138
	4.8.2 Optimal Investment in Child Quantity	139
	APTER 5 fied Growth Theory	140
5.1	The Fundamental Challenge	142
5.2	Incompatibility of Non-Unified Growth Theories	143
	5.2.1 The Malthusian Theory	143
	5.2.2 Theories of Modern Economic Growth	145
5.3	Central Building Blocks	146
	5.3.1 The Malthusian Elements	147
	5.3.2 Engines of Technological Progress	147
	5.3.3 The Origin of Human Capital Formation	148
	5.3.4 The Trigger of the Demographic Transition	148
5.4	The Basic Structure of the Model	149
	5.4.1 Production of Final Output	149
	5.4.2 Preferences and Budget Constraints	150
	5.4.3 Production of Human Capital	151
	5.4.4 Optimization	152

		Contents	•	хi
5.5	Evolution of Technology, Population, and Effective Resor	ırces	1	55
	5.5.1 Technological Progress		1	55
	5.5.2 Population		1	55
	5.5.3 Effective Resources		1	56
5.6	The Dynamical System		1	56
	5.6.1 The Dynamics of Technology and Education		1	57
	5.6.2 Global Dynamics		1	61
5.7	From Malthusian Stagnation to Sustained Growth		1	64
5.8	Main Hypotheses		1	66
5.9	Complementary Mechanisms		1	70
	5.9.1 Sources of Human Capital Formation		1	70
	5.9.2 Triggers of the Demographic Transition		1	71
	5.9.3 Engines of Technological Progress		1	72
	5.9.4 The Transition from an Agricultural to an Industrial Eco	onomy	1	72
5.1	0 Calibrations of Unified Growth Theory		1	74
5.1	1 Concluding Remarks		1	77
5.12	2 Appendix: Optimal Investment in Child Quality		1	78
	APTER 6 ified Growth Theory and Comparative Development		1	79
6.1	Country-Specific Characteristics and the Growth Process		1	82
	6.1.1 Factors Contributing to Technological Progress		1	83
	6.1.2 Reinforcing Elements in Human Capital Formation		1	85
	6.1.3 The Dynamics of Technology and Education		1	87
6.2	Variation in Technological Progress and Comparative Dev	velopment	1	89
6.3	Variation in Human Capital and Comparative Developme	nt	1	91
	6.3.1 The Emergence of Human Capital-Promoting Institution	ns	1	93
	6.3.2 Globalization and Divergence		1'	98

xii • Contents

6.4	Persistence of Deeply Rooted Biogeographical Factors	208
	6.4.1 The Neolithic Revolution and Comparative Development	208
	6.4.2 The Out-of-Africa Hypothesis and Comparative Development	217
6.5	Multiple Growth Regimes and Convergence Clubs	226
6.6	Concluding Remarks	229
	APTER 7	
Hu	man Evolution and the Process of Development	232
7.1	Natural Selection and the Origins of Economic Growth	233
7.2	Primary Ingredients	235
	7.2.1 The Darwinian Elements	235
	7.2.2 The Malthusian Components	237
	7.2.3 Determinants of Technological Progress and Human Capital Formation	237
	7.2.4 The Trigger of the Demographic Transition	238
7.3	The Basic Structure of the Model	238
	7.3.1 Production of Final Output	239
	7.3.2 Preferences and Budget Constraints	240
	7.3.3 Production of Human Capital	241
	7.3.4 Optimization	242
	7.3.5 Distribution of Types and Human Capital Formation	246
	7.3.6 Time Path of the Macroeconomic Variables	249
7.4	The Dynamical System	254
	7.4.1 Conditional Dynamics of Technology and Education	254
	7.4.2 Conditional Dynamics of Technology and Effective Resources	259
	7.4.3 Conditional Steady-State Equilibria	260
	7.4.4 Human Evolution and the Transition from Stagnation to Growth	261
7.5	Failed Take-off Attempts	265
7.6	Main Hypotheses and Their Empirical Assessment	266

ntents	• XIII
	269
	270
	273
	278
	279
	279
ces	280
	285
	289
	311
	317

Introduction

A complete, consistent, unified theory . . . would be the ultimate triumph of human reason.

-Stephen W. Hawking

The transition from an epoch of stagnation to an era of sustained economic growth has marked the onset of one of the most remarkable transformations in the course of human history. While living standards in the world economy stagnated during the millennia preceding the Industrial Revolution, income per capita has undergone an unprecedented tenfold increase over the past two centuries, profoundly altering the level and distribution of education, health, and wealth across the globe.

The rise in the standard of living has not been universally shared among societies. Variation in the timing of the take-off from stagnation to growth has led to a vast worldwide divergence in income per capita. Inequality, which had been modest until the nineteenth century, has widened considerably, and the ratio of income per capita between the richest and the poorest regions of the world has been magnified from a moderate 3:1 ratio in 1820 to a staggering 18:1 ratio in 2000 (Figure 1.1).

An equally striking development has emerged in the world distribution of population. The decline in population growth in Europe and North America toward the end of the nineteenth century and the long delay in the onset of a corresponding demographic transition in less developed regions, well into the second half of the twentieth century, have generated significant bifurcation in the global distribution of population. The share of world population that resides in the prosperous region of Europe has declined by nearly one-half over the past century, whereas the fraction of the human population that lives in the impoverished regions of Africa and Latin America has doubled.

Throughout most of human existence, the process of development was marked by Malthusian stagnation: resources generated by technological progress and land expansion were channeled primarily toward an increase in the size of the population, providing only a glacial contribution to the level of income per capita in the long run. While cross-country variations in technology and land productivity were reflected in differing population densities, their effect on variation in living standards was merely transitory.

2 • Chapter 1

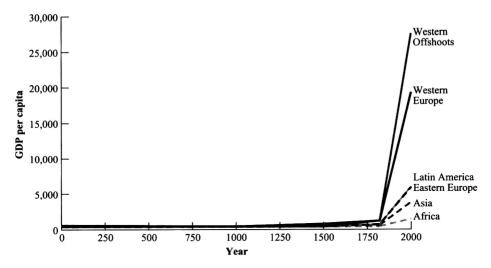


FIGURE 1.1. Evolution of regional income per capita over the past two thousand years. *Data source:* Maddison (2001).

Note: The Western Offshoots are Australia, Canada, New Zealand, and the United States

In contrast, over the past two centuries, various regions of the world have departed from the Malthusian trap and have witnessed a considerable increase in growth rates of income per capita. The decline in population growth over the course of the demographic transition has liberated productivity gains from the counterbalancing effect of population growth and enabled technological progress and human capital formation to pave the way for the emergence of an era of sustained economic growth.

The transition from an epoch of Malthusian stagnation to an era of sustained economic growth and the corresponding divergence in income per capita across the globe have been the center of intensive research during the past decade. The inconsistency of the predominant theories of economic growth with some of the most fundamental characteristics of the growth process and their limited ability to shed light on the origins of the vast global disparity in living standards have led to the development of a unified theory of economic growth that captures the growth process in its entirety.

Unified Growth Theory explores the fundamental factors that have contributed to the remarkable transition from stagnation to growth and examines their significance for the understanding of the contemporary growth process of developed and less developed economies. First, it unveils the factors that have generated the Malthusian trap. What accounts for the epoch of stagnation that