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ABSTRACT

The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale,
and data-driven decision making is sweeping through all aspects of society. Since the value of data
explodes when it can be linked and fused with other data, addressing the big data integration (BDI)
challenge is critical to realizing the promise of big data.

BDI differs from traditional data integration along the dimensions of vo/ume, velocity, variety,
and weracity. First, not only can data sources contain a huge volume of data, but also the number of
data sources is now in the millions. Second, because of the rate at which newly collected data are
made available, many of the data sources are very dynamic, and the number of data sources is also
rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content,
exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are
of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of
data provided.

This book explores the progress that has been made by the data integration community on the
topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced
by big data integration. Each of these topics is covered in a systematic way: first starting with a quick
tour of the topic in the context of traditional data integration, followed by a detailed, example-driven
exposition of recent innovative techniques that have been proposed to address the BDI challenges
of volume, velocity, variety, and veracity. Finally, it presents emerging topics and opportunities that

are specific to BDI, identifying promising directions for the data integration community.
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Preface

Big data integration is the confluence of two significant bodies of work: one quite old—data
integration—and the other relatively new—big data.

As long as there have been data sets that people have sought to link and fuse to enhance value,
data integration has been around. Even before computer scientists started investigating this area,
statisticians had already made much progress, given their pressing need to correlate and analyze
census data sets collected over time. Data integration is challenging for many reasons, not the least
being our ability to represent and misrepresent information about real-world entities in very diverse
ways. To effectively address these challenges, considerable progress has been made over the last few
decades by the data integration community on the foundational topics of schema alignment, record
linkage, and data fusion, especially for well-structured data.

Recent years have seen a dramatic growth in our ability to capture each event and every
interaction in the world as digital data. Concomitant with this ability has been our desire to analyze
and extract value from this data, ushering in the era of big data. This era has seen an enormous
increase in the amount and heterogeneity of data, as well as in the number of data sources, many of
which are very dynamic, while being of widely differing qualities. Since the value of data explodes
when it can be linked and fused with other data, data integration is critical to realizing the promise
of big data of enabling valuable, data-driven decisions to alter all aspects of society.

Data integration for big data is what has come to be known as big data integration. This book
explores the progress that has been made by the data integration community in addressing the novel
challenges faced by big data integration. It is intended as a starting point for researchers, practitioners
and students who would like to learn more about big data integration. We have attempted to cover
a diversity of topics and research efforts in this area, fully well realizing that it is impossible to be
comprehensive in such a dynamic area. We hope that many of our readers will be inspired by this

book to make their own contributions to this important area, to help further the promise of big data.
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