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Preface

Many differential equations are motivated by problems arising from models of chem-
ical reactors, neutron transport, population biology, infectious diseases, economics,
engineering, control theory, economics and other systems. Usually, we need to discuss
the existence of nonnegative solutions with certain desired qualitative properties. On
the subject of differential equations many elementary books have been written. This
book gives a systematic study to the exactness, existence and multiplicity of solu-
tions of p-Laplacian type equations, prescribed mean curvature equations, fractional
differential equations, impulsive differential equations, elasticity beam equations and
functional differential equations. In light of the content and the methods used, this
book is divided into eight chapters.

Chapter 1 gives a survey to the background, history and research development of
p-Laplacian type equations, prescribed mean curvature equations, fractional differen-
tial equations, impulsive differential equations, elastic beam equations and functional
differential equations.

The methods, theorems and definitions to be used are briefly summarized in
Chapter 2.

By using time-map analysis and fixed point fixed point theorems, chapter 3
systematically studies the exactness and the existence of solutions for the one-
dimensional p-Laplacian equations. In Section 3.1, the exact number and bifurcation
diagrams of positive solutions are obtained for the one-dimensional p-Laplacian in
a class of two-point boundary value problems under the nonlinearity f is general
form f(u) = Ag(u) + h(u). Meanwhile, some properties of the solutions are given in
details. In Section 3.2, the exact number of pseudo-symmetric positive solutions is
obtained for a class of three-point boundary value problems with one-dimensional
p-Laplacian. In Section 3.3, using fixed point techniques combining with partially
ordered structure of Banach space, we are concerned with determining values of A,
for which there exist positive solutions for a class of singular p-Laplacian differential
equations. In particular, the dependence of positive solution uy(¢) on the parameter
A is also studied.

In Chapter 4, we employ the time-map analysis and Mawhin’s continuation the-
orem to investigate the exactness of positive solutions and the existence of periodic
solutions of prescribed mean curvature operator equations, respectively. In Section
4.1, we utilize time-map analysis to discuss the exact number and bifurcation di-
agram of positive solutions are obtained for the one-dimensional prescribed mean
curvature equation when f(u) = u? + u? under the case 0 < p <1 < g < +o0. In
Section 4.2, by using time-map analysis, we consider the exact number and bifurca-
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tion diagram of positive solutions for a one-dimensional prescribed mean curvature
equation when f(u) = u” + u? under six cases: p =0, 0 < ¢ < 2; p=1 1<
g<4, ¢g=1,0<p<]; -1<p<g<0; -1<p<O 1 < ¢ < 400 and
—1<p<0,0<q<1. In Section 4.3, we employ coincidence degree theory to
study the existence of periodic solutions for a prescribed mean curvature Liénard
equation with a deviating argument.

Chapter 5 utilizes fixed point theorems to investigate the existence of solution
for fractional differential equations. In Section 5.1, the expression and properties
of Green’s function for a class of nonlinear fractional differential equations with
integral boundary conditions are studied and employed to obtain some results on
the existence of positive solutions by using fixed point theorem in cones. In Section
5.2, we investigate the existence and multiplicity of positive solutions for a class
of higher-order nonlinear fractional differential equations with integral boundary
conditions. In Section 5.3, we discuss the expression and properties of Green’s
function for boundary value problems of nonlinear Sturm-Liouville-type fractional
order impulsive differential equations.

In Chapter 6, we shall investigate the existence and multiplicity of positive so-
lutions for elastic beam equations with integral boundary conditions. In Section
6.1, using topological degree theory combining with partially ordered structure of
space, some sufficient conditions for the existence and multiplicity of symmetric
positive solutions for a beam equation are established. Meanwhile, the nonexistence
of symmetric positive solutions is also studied. By applying a new technique for
dealing with the bending term of beam equations, we consider the existence and
multiplicity of positive solutions for a fourth order p-Laplacian elasticity problems
in Section 6.2. It is interesting to point out that estimates on the norms of these
solutions will also be provided. In section 6.3, we utilize the fixed point theory for
completely continuous operator to investigate the existence of positive solutions for
a class of fourth order impulsive beam equations with integral boundary conditions
and one-dimensional p-Laplacian. Moreover, we offer some interesting discussion of
the associated boundary value problems.

Chapter 7 gives some new results of functional differential equations and impul-
sive functional differential equations. In Section 7.1, using well-known fixed point
index theory in a cone, we deal with the existence of positive periodic solution for
a functional differential equation with a parameter. The dependence of positive pe-
riodic solution x(t) on the parameter A is also studied. In Section 7.2, we consider
the existence of positive periodic solutions for the first-order impulsive functional
differential equations with two parameters. Several new and more general existence
and multiplicity results are derived in terms of different values of A > 0 and p > 0.
Here we not only consider the case that g is bounded, but the case that g is not
necessarily bounded is also considered. Section 7.3 investigates the existence of pe-
riodic solutions, especially for the existence of nontrivial periodic solutions for a
Rayleigh equation with two deviating arguments. The arguments are based upon
Leray-Schauder index theorem and Leray-Schauder fixed point theorem. Meanwhile,
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two examples are worked out to demonstrate the main results. In Section 7.4, we ap-
ply Leray-Schauder fixed point theorem to investigate the existence of anti-periodic
solutions for a Rayleigh equation with two deviating arguments. To illustrate how
our main results can be used in practice we present an example. In Section 7.5,
we investigates the expression and properties of Green’s function for a second-order
singular boundary value problem with integral boundary conditions and a delayed
argument. Furthermore, several new and more general results are obtained for the
existence of positive solutions for the above equation by using Krasnosel’skii’s fixed
point theorem. In Section 7.6, using a new method for dealing with second order
singular p-Laplacian equations with impulsive effects and deviating arguments, sev-
eral new and more general results are obtained for the existence of at least single,
twin or triple positive solutions by using Krasnosel’skii and Zabreiko’s fixed point
theorem, fixed point theorem due to Avery and Henderson and Leggett-Williams’s
fixed point theorem.

In Chapter 8, we first consider the existence of positive solutions of impulsive
differential equations with parameters. And then, introduce a new method for deal-
ing with impulse term of second impulsive differential equations. In Section 8.1,
using fixed point theorem in a cone, we consider a second order singular impulsive
differential equation with a parameter and establish the dependence results of the
solution on the parameter. In Section 8.2, we apply fixed point techniques combin-
ing with partially ordered structure of Banach space to investigate the existence and
multiplicity results for a second-order impulsive differential equations involving the
one-dimensional singular p-Laplacian. The exact upper and lower bounds for these
positive solutions are also given. In Section 8.3, we discuss multi-parameter fourth
order impulsive differential equations with one-dimensional m-Laplacian and devi-
ating arguments. Using inequality techniques and fixed point theories, several new
and more general existence and multiplicity results are derived in terms of different
values of A and p. In Section 8.4, using a new method for dealing with impulse term
of second impulsive differential equations, we are concerned with determining values
of A, for which there exist positive solutions. Section 8.5 investigates the existence
of positive solutions for a second order impulsive differential equations with devi-
ating arguments by using transformation technique and Krasnosel’skii’s fixed point
theorem. We discuss our problems under two cases when the deviating arguments
are delayed and advanced. The approach to deal with the impulsive term is different
from earlier approaches.

We wish to express our thanks to Prof. Xiaoming He, and Jingli Ren for their
valuable remarks and suggestions on the original manuscript. Our special thanks
is due our teacher, Professor Weigao Ge, for all which we were able to learn from
him. For editing pdf files, our grateful thanks to Professor Tongfu Lv. Furthermore,
the first author would like to thank North China Electric Power University and her
Department of Mathematics and Physics for supporting the project. The second
author would like to thank Beijing Information Science & Technology University
and his School of Applied Science for supporting the project.

Finally, the first author wishes to gratefully acknowledge the support of the Na-
tional Natural Science Foundation of China and the Fundamental Research Funds
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Chapter 1

Progress in Nonlinear Differential

Equations

This chapter gives a survey to the background, history and research development of
p-Laplacian type equations, prescribed mean curvature equations, fractional differen-
tial equations, impulsive differential equations, elastic beam equations and functional

differential equations.

1.1 p-Laplacian type equations

Differential equations with p-Laplacian arise naturally in non-Newtonian mechanics,
nonlinear elasticity, glaciology, population biology, combustion theory, and nonlinear
flow laws, see [1,2]. In recent years many cases of the exactness, existence, multi-
plicity and uniqueness of positive solution of differential equations with p-Laplacian
have attracted considerable attention (see [3-15]).

Addou et al. [3] and Sanchez and Ubilla [4] independently proved exact multi-
plicity of positive solutions for a more general k-Laplacian problem

—(¢k (v (7)) = Af(u), —-l<z<]1,
{ U(—§)=u(1):o, h ! (1.1.1)

where f(u) = u? +uP, k > 1,¢0x(y) = |y|* 2y and (éx(u'))’ is one-dimensional k-
Laplacian. Using shooting method, for 0 < ¢ < k— 1 < p, they proved the existence
of some A\* > 0 such that (1.1.1) has exactly two positive solutions for 0 < XA < \*,
exactly one positive solution for A = A* and no positive solution for A > \*.

In [7], Kajikiya et al. investigated the following one-dimensional p-Laplacian

problem

(ep(w)) + Xo(t)f(u) =0, 1€ (0,1), 133

u(0) = u(1) =0, wel)
and by virtue of the global bifurcation theory, they obtained the existence, nonex-
istence, uniqueness and multiplicity of positive solutions as well as sign-changing
solutions under suitable conditions imposed on the nonlinear term f.
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In [8], Dai et al. investigated the existence of one-sign solutions for the following

periodic p-Laplacian problem

_(‘pp(ul))l + Q(t)‘pp(u) = ’\w(t)f(u)’ 0<t<T, (l 1 3)
u(0) = w(T), '(0)=u(T). o

The author also examined the uniqueness of the solution and its dependence on the
parameter A under condition
0 )
(H)
ep(s)
On the other hand, we notice that there has been a considerable attention on

impulsive differential equations with one-dimensional p-Laplacian. For example,
in [12], employing the classical fixed point index theorem for compact maps, X.Zhang
et al. obtained some sufficient conditions for the existence of multiple positive solu-

is strictly decreasing in (0, 00).

tions of the problem

(pp(w' () = —f(t,u(t), O0<t<1, t+#t,
AultZik = —Ik(u(tk))’
< Aullt_—_tk = 0, k= 1,2, s MM, (114)

u(0) = Z_ a;u(&), u'(1)=0.

\

Of course, some questions are
Q 1.1.1  Whether or not the exactness of positive solutions for problem (1.1.1)
can be obtained when the nonlinearity f is general form: f(u) = Ag(u)+ h(u)? Fur-
thermore, can we generalize and improve the exactness results to nonlocal problems?
Q 1.2.2 Without a similar condition to that of (H), can we show the depen-
dence of positive periodic solution x(t) on the parameter A for problem (1.1.3)?
Q 1.2.3 If problem (1.1.4) with a parameter or multiple parameters, then can
we investigate the existence, multiplicity and nonexistence of it?

1.2  Prescribed mean curvature equations

Mean curvature equations arise in differential geometry, physics and other applied
subjects. For example, the negative solutions of prescribed mean curvature equa-
tions can describe pendent liquid drops in the equilibrium state(See[16]), or corneal
shape(See[17]). In recent years, increasing attention has been paid to the study of
the prescribed mean curvature equations by different methods(See [18-23]).



1.2 Prescribed mean curvature equations

A typical model of prescribed mean curvature equation is

—div(L) = Af(t,u), teRT,ue Q,
V14 [[Vul?

uw=20 on 99,

(1.2.1)

where € is a bounded domain in RV and f : Q x R* — R* is continuous.

The one-dimensional version of (1.2.1) is

' /
_<\/T1j_—u_/2) = )\f(t,u), a<t< b,

u(a) = u(b) = 0.

(1.2.2)

There are some papers considering the exact number of positive solutions of (1.2.2) in
special case of f (See[18, 19]). The study derived from an open problem proposed by
A. Ambrosetti, H. Brezis and G. Cerami in [24], which concerned the exact number

and the detailed property of solutions of the semilinear equation

—u = Aw? +ud), uw>0 in (0,1),
{ u(0) = u(1) =0, (1.2.3)

where 0 < p < 1 < ¢ < 4o00. Since then, related problems have been studied by
many authors, see [25,26] and the references cited therein.

Recently, P.Habets and P.Omari [18] considered the existence, nonexistence and
multiplicity of positive solutions of the Dirichlet problem for the one-dimensional

prescribed curvature equation

_(ﬁ) = ftu), w0 @ (0.1,

u(0) = u(1) =0,

(1.2.4)

in connection with the changes of concavity of the function f, such as f(u) =
max{Au?, pu?} and f(u) = min{\u?, pu?}, where 0 < p < 1 < ¢q. In particular,
they obtained the following results for f(u) = \uP, where 0 < p<1,p=1orp > 1.

Theorem 1.2.1 (See P.Habets and P.Omari [18])

(i) If 0 < p < 1 then there exist A, and A* with 0 < A, < A* such that (1.2.4)
has exactly one solution for A € (0, A\,]U{A*}, exactly two solutions for A € (A, \*),
and no solution for (\*, +00).

(ii) If p = 1 then there exists A\, with 0 < A, < A* = 72 such that (1.2.4) has
exactly one solution for A € (., A*) and no solution for A € (0, \,) U [\*, +0).

(iii) If p > 1 then there exists A, > 0 such that (1.2.4) has no solution for
A € (0, \) and exactly one solution for A € (\,, +00).
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Moreover, P. Habets and P. Omari said their results still hold in the case f(u) =
AuP + pud (See, Remark 4.1 in [18]).

Very recently, W.Li and Z.Liu [19] examined problem (1.2.4) when f(u) = u”+uf,
and obtained the following theorems.

Theorem 1.2.2 (See W. Li and Z. Liu [19]) Assume that 1 < p < ¢ < 4o00.
The following conclusions hold:

(i) for any A > 0, (1.2.4) has at most one solution;

(ii) there exist 0 < Ay < Ag < +o0 such that (1.2.4) has no solution for 0 < A < Ay

and has exactly one solution for A > Ag;

(iii) if, in addition
p—2++/p?+20p+20
q< ) ;

then there exists 0 < A, < +oo such that (1.2.4) has no solution for A < A, and has
exactly one solution for A > A,.

Theorem 1.2.3 (See W. Li and Z. Liu [19]) Assume that 0 < p < g < 1. The
following conclusions hold:

(i) for any A > 0, (1.2.4) has at most two solutions;

(i) there exist 0 < A\ < A2 < +oc such that (1.2.4) has exactly one solution for
0 < A < A1 and has no solution for A > Ag;

(iii) if, in addition

- ( +2 )1/ C
T \V2In(v2+1) 42 ’
then there exist A\, and A\* with 0 < A, < A* such that (1.2.4) has exactly one
solution for A € (0, \,]JU{A*}, exactly two solutions for A € (A, A*), and no solution
for (X*, +o00).

On the other hand, W.Li and Z.Liu [19] raised an open problem: It would be
very interesting to study exact number of solution of (1.2.4) if p, g satisfy 0 < p <
1 < g < 400 (See (d) of Remark 1.4 in [19]). The purpose here is to solve this
problem.

Liénard type equations have a wide range of applications in applied science, such
as physics, biology, mechanics, and the engineering technique fields (for instance,
see [27-29]). However, to the best of our knowledge, the corresponding theory for
prescribed mean curvature Liénard equation with a deviating argument is not inves-

tigated till now.

1.3 Impulsive differential equations

Impulsive differential equations, which provide a natural description of observed
evolution processes, are regarded as important mathematical tools for the better
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understanding of several real world problems in applied sciences, such as population
dynamics, ecology, biological systems, biotechnology, industrial robotic, pharmacoki-
netics, optimal control, ete. Therefore, the study of this class of impulsive differential
equations has gained prominence and it is a rapidly growing field. For the general
theory of impulsive differential equations, we refer the reader to the references [30-32]
whereas the applications of impulsive differential equations can be found in [33-35].

Some classical tools such as bifurcation theory [36], fixed point theorems in cones
[37], the method of lower and upper solutions [38] and the theory of critical point
theory and variational methods [39,40] have been widely used to study impulsive
differential equations.

At the same time, we notice that a new technique via appropriate transformation
is proved to be very effective in studying the solvability of impulsive differential
equations. Such techniques have attracted the attention of X. Zhang, J. Yan and A.
Zhao [41] and X. Sun, H. Huo and C. Ma [42], etc.

In [41], X. Zhang, J. Yan and A. Zhao transformed the following problems

2'(t) = —a(t)z(t) + p(t)f (¢, z(t — 10(t)), 2(t — 11(2)), -+, @(t — Ta(t))),
ae. t>0, t#t, (1.3.1)
J‘(tz-)—l‘(fk) =bk.’E(t1\-), o — 1,2,"'

into
y'(t) = —a(t)y(t) + A(t)g(t, y(t — 10(t), y(t — 11 (1), -+ ,y(t — Ta(t))), ae.t>0
(1.3.2)
by using z(t) = b(t)y(t), where
bt)= ] (1+be),
0<tr<t
here {by} is a real sequence with by > —1, k= 1,2,---. Then they considered the

neutral differential equation (1.3.2) without impulses for establishing the existence
of periodic solutions of problem (1.3.1).

Recently, by utilizing the same method as the papers [41], X. Sun, H. Huo and
C. Ma [42] generalized the results of problem (1.3.1).

However it is quite difficult to apply this approach to second impulsive differ-
ential equation, especially for second impulsive differential equation with deviating
arguments. Another question is that there are only a few articles which dealt with
some impulsive differential equations with quasilinear operator.

1.4 Functional differential equations

Functional differential equations with periodic delays appear in some ecological mod-
els. For example, the model of the survival of red blood cells in an animal (See [43]),
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and the model of “dynamic disease” (See [44]), and so on. One of the important
questions is whether these equations can support positive periodic solutions. In re-
cent years, periodic population dynamics has become a very popular subject, and
several different periodic models have been studied by many authors; see [45-47] and
references therein.

An important functional differential equation is Rayleigh equation with two de-

viating arguments in the form of
2" (t) + f(2' () + g1(t, z(t — 11(1)) + ga(t, x(t — T2(t))) = e(t), (1.4.1)

which has been studied by authors [48-50] under the assumption of f(0) = 0 or f(t,0)
= 0. It is not difficult to see that if g;(¢,0) + g2(¢,0) # e(t), then the periodic
solution obtained in [48-50] must be nontrivial. But if g1(¢,0) + g2(¢,0) = e(t),
then the periodic solution obtained in [48-50] may be trivial under the assumption
of f(0) = 0 or f(¢,0) = 0. And if the periodic solution is unique, then it must
be trivial. Thus, it is worth discussing the existence of the nontrivial periodic of
Rayleigh equations with two deviating arguments in this case.

At the same time, we notice that there exist only few results for the existence of
anti-periodic solutions for Rayleigh equation and Rayleigh type equations with and
without deviating arguments in the literature. The main difficulty lies in the middle
term f(2/(t)) of Eq.(1.4.1), the existence of which obstructs the usual method of
finding a priori bounds for delay Duffing or Liénard equations from working. Thus,
it is worthwhile to continue to investigate the anti-periodic solutions of Rayleigh
equation in this case.

Recently, differential equations with deviating arguments have received much
attention. For example, in [51], C. Yang, C. Zhai and J. Yan studied the existence
and multiplicity of positive solutions to a three-point boundary value problem with

an advanced argument

(1.4.2)

{ 2" (t) + a(t)f((a(®)) =0, t€ (0,1),
2(0) =0, ba(n) = (1),

where 0 < < 1, b > 0 and 1 — bn > 0. The main tool is the fixed point index
theory. It is clear that the solution of [51] is concave when a(t) > 0 on [0, 1] and
f(xz) =0 on [0,00). However, few papers have been reported on the same problems
when the solution without concavity.

Very recently, a class of p-Laplacian differential equations with deviating ar-
guments both of an advanced or delayed type have received much attention. For
example, in [52], T. Jankowski considered the following third order p-Laplacian dif-
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ferential equation

(pp(u” (1)) + h(t) f(t,u(t), u(at))) =0, t€ J,
W () = w'(ty) + Qu(u(ts)), k=1,2,---,m, (1.4.3)
Bu(0) — yu'(0) = 0, Su(l) +nu'(1) =0, u”’(0)=0,

where a(t) # t on J. The author obtained the existence of at least three positive
solutions. The main tool is a fixed point theorem due to Avery [53] which is a
generalization of the Leggett-Williams fixed point theorem.

Of course, a natural question is

Q 1.4.1 Whether or not the existence of positive solutions for a second order
p-Laplacian differential equation with deviating arguments both of an advanced or
delayed type can be proved?

Remark 1.4.1 1In [52], by means of the properties of Green’s function, T.
Jankowski obtain the inequality

R u(t) = pllul,
where € € (0,1) and p € (0,1).

In fact, the calculation of p is very difficult when ¢ € [¢,1]. This is probably
the main reason that there is almost no paper to study the existence of positive
solutions for class of second order p-Laplacian impulsive differential equations with
two parameters and deviating arguments both of an advanced or delayed type. In
[52], T. Jankowski obtained a constant number p by means of the properties of
Green’s function. However, it is well known that there is not any Green’s function
in one-dimensional p-Laplacian boundary value problems of second order differential
equations. This implies the following question.

Q 1.4.2 Whether or not a similar inequality can be obtained if there is no
Green’s function when t € [¢,1]?

This needs to open a new technique to deal with second order p-Laplacian equa-
tions with deviating arguments, especially for second order p-Laplacian equations
with impulsive effects.

1.5 Fractional differential equations

Fractional differential equations arise in many engineering and scientific disciplines
as the mathematical modelling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology,
Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental data, and so



