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Foreword

Early in 1955 | began to write an article on the Quantum Theory of
Fields. The introduction contained this description of its plan. “In part A
of this article a general scheme of quantum kinematics and dynamics -
is developed within the nonrelativistic framework appropriate to sys-
tems with a finite number of dynamical varibles. Apart from specific
physical consequences of the relativistic invariance requirement, the
extension to fields in part B introduces relatively little that is novel,
which permits the major mathematical features of the theory of fields
to be discussed in the context of more elementary physical systems.”

A preliminary and incomplete version of part A was used as the
basis of lectures delivered in July, 1955 at the Les Houches Summer
School of Theoretical Physics. Work on part A ceased later that year and
part B was never begun. Several years after, | used some of the material
in a series of notes published in the Proceedings of the National
Academy of Sciences. And there the matter rested until, quite recently,
Robert Kohler (State University College at Buffalo) reminded me of the
continuing utility of the Les Houches notes and suggested their publi-
cation. He also volunteered to assist in this process. Here is the result.
The main text is the original and still incomplete 1955 manuscript,
modified only by the addition of subheadings. To it is appended
excerpts from the Proc. Nat. Acad. of Sciences articles that supplement
the text, together with two papers that illustrate and further develop
its methods.

Belmont, Massachusetts o Julian Schwinger
1969
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The classical theory of measurement is built
upon the conception of an interaction between
the system of interest and the measuring apparatus
that can be made arbitrarily small, or at least
precisely compensated, so that ohe‘can speak mean-

ingfully of an idealized measurement that disturbs
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no property of the system. But it is character-
istic of atomic phenomena that the interaction
between system and instrument is not arbitarily
small. Nor can the disturbance produced by the
interaction be compensated precisely since to some
extent it is uncontrollable and unpredictable.
Accordingly, a measurement on one property can
produce unavoidable changes in the value previously
assigned to another property, and it is without
meaning to speak of a microscopic system possessing
precise values for all its attributes. This con-
tradicts the classical representation of all phys-
ical quantities by numbers. The laws of atomic
physics must be expressed, therefore, in a non-
classical mathematical language that constitutes

a symbolic expression of the properties of micro-

scopic measurement.

1.1 MEASUREMENT SYMBOLS

We_shall develop the outlines of this math-

ik

ematical structure by discussing simplified phys-

ical systams which are such that any physical quan-

- 'tityé‘A “assumes only a finite number of distinct

-
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values, a',..a”". In the most elementary tybeAg;
measurement, an ensemble of independent s;;ilgr
systems is sorted by the apparatus into subensembles,
distinguished by definite values of the physical
quantity being measured. Let M(a') symbolige the
selective measurement that accepts systems possess-
ing thé value a' of property A and rejects all
others. We define the addition of such symbols to
signify less specific selective measurements that
produce a subensemble associated with any of the
values in the summation, none of these being dis-
tinguished by the measurement.

The multiplication of the measurement symbols
represents the successive performance of measure-
ments (read from right to left). It follows from
the physical meaning of these operations that add-
ition is commutative and associative, while multi-
plication is associative. With 1 and 0 symbol-
izing the measurements that, respectively, accept

and reject all systems, the properties of the

elementary selective measurements are expressed by

M(a')M(a'")

M(a') kL L]

M(a')M(a") = 0 ’ a' # a" (1.2)
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Yy M(a') = 1. (1.3)
al

Indeed, the measurement symbolized by M(a')
accepts every system produced by M(a') and rejects
every system produced by M(a") , a" # a' , while
a selective measurement that does not distinguish
any of the possible values of a' 1is the measure-
ment that accepts all systems.

According to the significance of the measure-
ments denoted as 1 and 0 , these symbols have the

algebraic properties

11=1 , 00 =020
1 0=01-=0 (1.4)
1+0=1,
4and
IM(a') = M(a')l = M(a') ,
OM(a') = M(a')0 =0
M(a') + 0.= M(a') , (1.5)

-

which justifies the notation. The various properties
of 0, M(a') and 1 are consistent, provided multi-
plicationt is distributive. Thus,

” <
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E M(a')M(a") = M(a') = M(a")1 =~ - h
a" . R .
= M(al)z M(all) . (1.6)
a'l

L -
@

The introduction of the numbers 1 and 0 as multi-
pliers, with evident definitions, permits the multi-
plication laws of measurement symbols to be combined

in the single statement

=

M(a')M(a") = §(a',a")M(a") , (1.7)
where

6(al,an) =
’ a' ?é a" - (1‘8)

1.2 COMPATIBLE PROPERTIES. DEFINITION OF STATE

Two physical quantities Ay and A, are
said to be compatible when the measurement of one
does not destroy the knowledge gained by prior
measurement of the other. The selective measure-
ments M(ai) and M(a;) , performed in either
order, produce an ensemble of systems for which one
can simultaneously assign the vglues ai to Ay

!

and a, to A, . The symbol of this compound

measurement is
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M(aja,) = M(aj)M(ay) = MlapM(ay) .  (1.9)

By a complete set of compatible physical quantities,

A A, , we mean that every pair of these quan-

1By
tities is compatible and that no other gquantities
exist, apart from functions of the set A , that

are compatible with every member of this set. The

measurement symbol
k
M(a') =1 Mf{a,) (1.10)

then describes a complete measurement, which is
such that the systems chosen possess definite values
for the maximum number of attributes; any attempt
to determine the value of still another independent
physical quantity will produce uncontrollable
changes in one or more of the previously assigned
values. Thus the optimum state of knowledge con-
cerning a given system is realized by subjecting

it to a complete: selective measurement. The
systems aamitted by the complete measurement

M(a') ate said to be in the state a' . The
symbo;ic groperties of complete measurements are

-

-also given by (1.1), (1.2) and (1.3).

i



THE ALGEBRA OF MEASURMENT : : N 7

i

R o -
1.3 MEASUREMENTS THAT CHANGE THE STATE

o .
-8

A more general type of measurement iﬁ;orporates
a disturbance that produces a change 6fﬁstate: The
symbol M(a', a") indicates a selective measure-
ment in which systems are accepted only in the

state a and emergé-in the state a' . The meas-
urement process M(a') is the special case for

which no change of state occurs:

M(a') = M(a', a') . (1.11)

The properties of successive measurements of the

type M(a', a") are symbolized by

M(a', a")M(a"™, &%) = §(a", a™ M(a', a") ; (1.12)

for, if a" # a“ , the second stage of the compound
apparatus accepts none of the systems that emerge
from the first stage, while if a" = a", all such
systems enter the second stage and the compound
measurement serves to select syétéms in the state
a'Y and produce them in the state a'. Note that

if the two stages are reversed, we have



