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Preface

The simplest instance of the interplay between group theory and
topology occurs where a group acts on a graph and information is obtained
about the group or about the graph; it is these occurrences which form
the theme of this book.

Chapter I offers a review of the Bass-Serre theory of groups acting on
trees and graphs, with some typical combinatorial group theoretic
applications. For the sake of novelty, we have included a very recent result
from the literature on the fixed group of an automorphism of a free group.
Although we have attempted to make the account self-contained, it is
rather brusque for initiation purposes, and the reader should ideally
already have some familiarity with group theory, group actions, presenta-
tions and combinatorial theory.

Chapters II, III and IV are essentially new.

Chapter II, using Boolean rings, associates to each connected graph
and positive integer n, a tree which explains how the graph disconnects
when any n edges are deleted. One application is the recent result from
the literature characterizing infinite finite-valency distance-transitive
graphs. This chapter is elementary in the sense that no background material
is assumed.

Chapter III is devoted to drawing lines joining up functions in an
equivariant way to get a previously unsuspected tree. The argument is
technical and elementary. The result has some rather pleasing applications,
which are collected together in Chapter IV. New results include the proof
of a conjecture of Wall, and a characterization of arbitrary groups with
more than one end; previously known results are the characterization of
groups of cohomological dimension at most one over an arbitrary ring,
and the characterization of groups which have a free subgroup of finite

xi



Xii Preface

index. The reader is assumed to be familiar with module theory and exact
sequences; a Sylow theorem is used in a remark; cohomology is introduced
in a mild way, since the results can be phrased in terms of derivations to
projective modules.

Chapters V and VI examine dimensions two and three, and consist of
results which, having only recently appeared in the literature, are appearing
in book form for the first time.

Chapter V is an algebraic account of the cohomological characterization
of infinite surface groups as the groups which satisfy two-dimensional
Poincaré duality. The cohomology and topology are more sophisticated
than in the rest of the book. The reader is assumed to be familiar with
the necessary homological algebra, which is quickly summarized without
many proofs. The reader familiar with the topology of surfaces, or
manifolds in general, will be able to appreciate the motivation behind the
entire chapter; the reader without the background in topology will have
to be sufficiently algebraically inclined to be motivated by the result in
its own right.

Chapter VI examines groups acting on two-complexes and deduces that
almost finitely presented groups are accessible in the sense of Wall. It
concludes with a similar analysis of three-manifolds and deduces the
equivariant loop and sphere theorems. Here the topological background
is summarized without proofs.

There are no exercises, apart from four open conjectures and the
occasional tedious argument left to the reader.

Each chapter concludes with some notes and comments citing our
sources for results and ideas. The sources, which are listed in the absolutely
minimal bibliography and author index, tend not to be primary, and our
attributions should be taken lightly, especially by authors who have been
omitted.

We are indebted to the many mathematicians who have made helpful
comments and devoted much time and effort to helping us understand
the literature; their sole reward is the knowledge that the book would
have been even worse without their help.

We thank Ed Formanek and Peter Linnell for generously contributing
unpublished results and arguments.

The first-named author thanks the Mathematics Department of
Pennsylvania State University for providing a graduate course forum to
air and develop some of the results, and the CRM in Barcelona for support
and gracious hospitality during the summer of 1985. The second-named
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author thanks the Royal Society and the IHES for support and gracious
hospitality during the first six months of 1983.

Warren Dicks
Barcelona, Spain
M.J. Dunwoody
Sussex, England
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ERRATA
(JANUARY 31, 2008)

PLACE CHANGE

54 Change “(e)” to “(v)” twice.

67 Interchange labels “srse” and“srsre”.

91-2 Change to “repetitions of vertices and no repetitions of edges. Clearly such

a path is reduced.”.

11g Change “EX” to “VX”.

115 Change boldface subscript “.” to ordinary subscript “.”.

115 Change “and” to “and”.

126 Change “elements 1,1” to “element 1”.

131 Change“t.(G(e)” to “G(e)t=".

1713 Delete “so G/N =~ w(G\T)”.

181, Change “EX*!” to “ET*17,
27! Interchange “Gre = Gp,p}” and “G,”.
295 Interchange “V” and “E”.
3212 Change “uy” to “g;”.
3313 Change “a(e)(arc(g*)u)” to “a(e)(are(gte)(u))”.
359 Change “ * G(v)” to “G = x G(v)”".

veEV vev

3910 Change “69” to “71”.
3919 Change “e = EYy” to “e € EYy”.
407 Delete one “meet any”.
4147 Change “thdn” to “then”.
4119 Change “g---” to “gz"'”.
44 Stallings (1991) uses similar techniques to prove many other results.
45! Change “G” to “x;c1G;”.
457 Insert Corollary: If & : F — G is a homomorphism of free groups then there

exist subgroups F; and F, of F such that F = F; x F,, and « is injective
on Fj, and a is trivial on F,. (Herbert Federer and Bjarni Jénsson, Some
properties of free groups, Trans. Amer. Math. Soc., 63 (1950), 1-27.)

4519 Change “take” to “takes”.

453 Change “Gerardin” to “Gérardin”.
46¢ 5 Delete “from ... Brown”.

5010 Change “(v,v")” to “(v',v)”.

535 Change “= v(e*)” to “= v(e)*”.



CHANGE

Change “s(v) = s(w) then e(v) = e(w) for all e € E” to “e(v) = e(w) for all
e € E then s(v) = s(w)”.

After “6(ss’) C 8s” insert “ Uds'™.

Change “s’(v)” to “s(v')”.

Add “and not containing 0,17 after “E,_1”.

Change “E' U E” to “E U E".

Change “1s,7s = Tsx,15%” to “4s = 18*,7s, 75" twice.

Change “Fredenthal” to “Freudenthal”.

Change“and” to “and”.

Chmge “S’?? tO“E'”.

Change “{e}” to “{e}”.

Delete “T} to a path of”.

Change “succesor” to “successor”.

Change “H-H” to “G-H”.

Change “amost” to “almost”.

Cha.nge “e to “S”-

Change to “If (p,q,7) = (2,3,6) then ach, bac generate a free abelian sub-
group of rank two and index 6; sce Magnus (1974),p.69.”

Bass (1993) gives a (short) proof that G has a free subgroup of index 7.
Change “G indexed by A” to “A indexed by G”.

Change“of AG” to “of (G, A)”.

Change “Theorem 3.1” to “Theorem 3.13”.

Change “(1968)” to “(1971)".

Change “B” to“R”.

Change to “Theorem 6.12 is due to Hopf for G finitely generated, and the

general case is new”.
Change “Theorem 4.12” to “Theorem 4.11”.

Change the first “P” to “G”.

Change “H*” to “H,” and “H®” to “H;”.

After “Brown(1982)” add “and Zimmerman (1981)”.
Change “H,” to “H*” and “H;" to “H'".

Change “he” to “the”.

Change “P” to “Q” and “P" to “Q".

Change “P” to “Q".

Chmlge “P — 1 PI” tO “Q 5y Ql”.

Change “P — P to “Q — Q'”.

Change “Q” to “B” twice.

Change “P” tO HQ”’ “P'” to “Q’”,“P,I” tO “QII”’ twice each.
Change “moduls” to “modules”.

Change the seven occurrences of “P” to “Q”.
Change “d(p ® q) = Opp ® g + (—1)%8 9p® J,¢” to
“Up®q) =(-1)"% 9ppRq+p®yq".



PLACE

14610-4

14813

1484

1485
14910

14911,12
14915
14917

15416
155!
155,
1565
1584

163%7
16313
1703
171]7—19

173°

CHANGE

Should read

“(Orgqz) N @

=[(~1)® 99pp® g +p®doq| N ¢

= (1) 99pp ® ¢q + p ® $p8gq

= (—1)%8 99pgc(p® ¢g) + [(p ® g) N ¥dg)

= (—1)%8 99pgc[(p ® 9) N @] + [(P ® 9) N BHom(q,c)F)

= (—1)8 99pgc(z N @) + (€ N Btom(@,c) %)

If, further, ¢ is homogeneous, then either pgc(zN¢) = 0 or deg ¢ = —deg g,
and in both cases we can write

4) (OreqQT) N ¢ = ((—1)%® *8pgc(z N @) + T N Biom(@,c) 8"

In 2.16 Proposition, in the display change “Extp(B,C)” to “Ext}(B,C)”

twice, and after the display change “commutes” to “commutes with sign
—1)m,

In 2.17 Proposition, in the display change “Ext}(B’,C)” to “Extgr(B’,C)”",

and change“Ext};"! (B”,C)” to “Extg(B”,C)”, and after the display delete
“with sign (—1)"*17,

Interchange “n” and “£”.

Change “Opgc(z N @) — (—1)48%(z N Byom(Q,c) 9" to

“((=1)48%dpgc(z N ¢)) + = N Btom(Q,c) 8" -

Delete “with sign —(—1)9%8¢ = (—1)"+17,

In 2.18 Proposition, in the display change “Ext '” to “Extit!”.

In 2.18 Proposition, after the display change “commutes with sign (—1)™” to
“commutes with sign (—1)"+1”,

Change the first “is” to “in”.

In top display change “(—1)"*'¢ N —" to “6 N —".

Change “exact at R” to “exact at RG”.

Change “Theorem 1.9.2” to “Corollary 1.9.4”.

Change “contractible n-manifold X” to “K-orientable K-acyclic K-homology

n-manifold X, as defined in Section 3 of Dicks-Leary (1995)”.

Change “[1, Rp)” to “[2, Rp]” twice.

Add “and m,; denotes 17.

Change “Thus H is FPy” to “Thus G is FPy”.

Change “ notice ... .” to “notice that the G-action arises by embedding G

in H ! Sym,, and defining actions of H" and Sym,, separately.”.

Delete “G-finite” after “locally finite”.



PLACE

173204

1743

1765
1764
17744

CHANGE

Replace with

“Fix a vertex vg of Yj.

Consider any w € Vj, and recursively construct an infinite reduced path
P, as follows. Start with the vertex w, thought of as a base vertex, and take
the neighbours of w to be the base vertices of their respective components
in the forest Yy — star(w). Since Yy — star(w) is infinite and has only finitely
many components, one of the components is infinite. Choose one of these
infinite components, and if there are more than one, choose one which does
not contain vo. This choice of infinite subtree corresponds to choosing an
edge incident to w to be the first edge in our infinite path. We now repeat
the same procedure with our chosen infinite subtree with base vertex. In this
way, we recursively construct an infinite reduced path P, which starts at w,
and does not contain any edge f such that w lies in an infinite component of
Yo — {f} not containing vp.

Let e be an edge of Y. Let Yp(vo,e) denote the Yp-geodesic from v to a
vertex of e, but not passing through e. Let §Y(vo,e) denote the finite set
of edges of Yy which have one vertex in §Yp(vp,e) and the other vertex not
in Yo(vo,e). Thus e lies in 8Yy(vo,€), and Yy(vo,e) forms one of the finite
components of Yo —dYp(vo, e). Let Y, denote the the subtree of Y, generated
by the finitely many finite components of Yy — §Yp(vp, €), so Y, is finite.

For e € EYy, w € VYY), we claim that if e € P, then w € Y. Suppose that
w does not lie in Ye, so w lies in an infinite component Y; of Yy — §Yo(vo, €).
Let f denote the element of §Yy(vo,€) incident to Y. Then f lies between
w and Yg(vg,e). Hence f lies between w and vy. Also, Y; is an infinite
component of ¥ — {f} containing w, so by its construction, P, stays in Y;
and does not cross f. Hence P,, does not meet Yy(vg,€), so does not contain
e. This proves the claim.

For any v in V, there is a unique element g of G such that gv € Vg,
because G acts freely on V, and we define P, = g~'P,,. Thus P, is an

infinite reduced path in T' which begins at v.
Consider any edge e of T. We claim that there are only finitely many

v € V such that e belongs to P,. Suppose then that v € V such that e € P,.
There is a unique g in G such that gv € Yy, and then ge € gP, = P,,. Hence
ge lies in Yy, and gv lies in the finite subtree Yge of Yp. Here g is the unique
element of G such that ge € EY), and we have v € g~1Yj,, so there are only

finitely many possibilities for v, as desired.”.
Change “Thus we may assume that n > 1.” to “If n» = 1 then G has an

infinite cyclic subgroup of finite index by Theorem 4.4, and this case is easy.
Thus we may assume that n > 2.”.

Change “K*” to “HF.

Change “Thus in” to “Now let (G, W) be a PD" pair, so, by ”.

Change whole line to“K-orientable K-acyclic K-manifold X of dimension n,



PLACE

177¢
17820
1839
18512

18513
1857

186'°
18612
1987

198;5
19914
20219

20310
2024
203

20376
2058

2054
205,5

20612,13
2074
2084
209,
211,
21255 93
21299
219°
21915
2204
22245
2245
22444
224,
22511
225,
2293
231°

CHANGE

whose boundary components are K-acyclic”.

Chmge “60” to “EO”.

Change “Definitions” to “Definition”.

There is a vertical arrow missing on the left of the diagram (1).

In the display that comes two before (7), in the top row, change “KwKE”

13 y
In the dispiay that comes two before (7), in the label on the rightmost vertical
arrow, delete “(—1)™”.
In the display that comes before (7), in the label on the rightmost vertical
arrow, delete “(—1)™”.
In the display in mid-page, change the two rightmost “6 N —" to “—¢ N —".
In (8) change “€ N 7" to “—£Nne".
Change “W — Guw” to “W — Gwg”.
Insert “ET = Ge” after “G, is finite”.
Insert “ET = Ge” after “G, is finite”.
Change 13 Z ” tO 143 Z ”'
J€E[1,N] i,7€[1,N] B
Change “||a|[[b]| > [tr (B)|” to “||a]|[[b]| > |tr (ab)|".
Change “then — induces” to “then — induces”.
Change to
“(1)  |lanel]® = tr(aneane) = tr(ane@y) = tr(ancay) = tr(anéan,).”.
Change “tr(anca,)” to “tr(a,ca,)” twice.
Change “P +— KG ®k P” to “P —» KG ®k P”.
Change “for all j € [1,m]” to “for all i € [1,m]".
Change " E ” to “z”.
i,9€G i,9
Change “[w1 -+ - wg] = [wy - - wows]” to “Tr(w; -+ - wg) = Tr(wa - - - wewr)”.
Before “invertible” insert “is”.
Change “A x¢c Xp” to “A x¢ zp".
Change “V-term” to “E-term”.
Change “_y 0” to “— PO”'
Change “= K is right annihilated by wKG” to “= K = KG/wKG”.
Change “a*(P*) CwKG” to “a*(P*) = wKG”.
After “if” insert “and only if”.
Change “Zy(K,G)” to “Hom(Co(K),G)".
Change “Z® Z” to “Z x Z".
Change “G” to “K™.
Change “s” to “o”.
One can change “PN|K|” to “P”, since P C |K]|.
Change “j(%)” to “jp(1)”.
Cha.nge uhln to “hl”.
After “colouring” insert “with two colours”.
Change “X” to “S”.
Change the second “v;” to “vy”.



PLACE

23215
23216
236°

2401312

245'-3
2453
2727

2727

2736
2735
27316-!8
273%
2734
2749
27420—45

274%7
274%
2751

275,
276°
2747

27510
275,

27612

CHANGE

Change “ET” to “VT”.

Change the second “ET” to “T™.

At the end of the line add “Moreover it follows from the thinness of b3 or b}

that v =4."

Change “G, the automorphism group of K, is generated” to “G is the group

of automorphisms of K generated”.

Delete “H'(K,Z,) ... that”.

Change “H'(K,Z,) = 0” to “every scc separates M”.

Insert in left hand column:

“Bass, H. {45, 46, 71}

1993. Covering theory for graphs of groups, J. Pure and Appl. Algebra 89,

3-47. {105=} .

In right hand column change the Burns entry to

“Burns, R.G.

1971. On the intersection of finitely generated subgroups of a free group,

Math. Z. 119, 121-130. {39} ”

In right hand column change “Gerardin” to “Gérardin”.

In left hand column change “15” to “25”.

In right hand column delete the entry.

In right hand column change “Normal Flachen” to “Normalflichen”.

In right hand column change “Raiime” to “Raume”.

Delete from left hand column “134,”.

In the right hand column, interchange lines 20-32 with lines 33-45, to obtain

alphabetic order.

In left hand column change “dreidemensionalen” to “dreidimensionalen”.

In right hand column change “isomorphismen” to “Isomorphismen”.

Insert in right hand column

1991. Foldings of G-trees, pp. 355-368 in Arboreal Group Theory (Roger

C. Alperin, Editor), MSRI Publications 19, Springer-Verlag, Berlin, 1991.
44~

éhan;e “Raume” to “Rédumen”.

Insert in left hand column “(-)"”.

Insert in left hand column:

“Magnus, W.

Noneuclidean Tesselations and their Groups, Academic Press, New York,

1974. {103}”

In the right hand column change “ {71, 100} ” to “ {71, 100, 134}”.

In the right hand column add

“Zimmerman, B.,

1981. Uber Homedmorphismen n-dimensionaler Henkelkorper und endliche

Erweiterungen von Schottky-Gruppen, Comm. Math. Helv. 56, 474-481.
134}

’{I‘he %riangle in the right hand column should be unshaded.



Conventions

G denotes a group, fixed throughout the book.

& denotes the empty set.

Sets are indicated by {x|x-:-} or sometimes {x:x---} for typographical
reasons.

B = A means B is a subset of A.

B = A means B is a proper subset of A, that is, distinct from A.

If B< 4 then A — B denotes the complement of B in A.

AUB, Av B, AnB, A x B, respectively, denote the union, the disjoint
union, the intersection and the Cartesian product of two sets, A, B.

U'A,-, .-Yl A, ()Ai, H’A,-, respectively, denote the union, the disjoint

ie i€ ie
union, the intersection and the Cartesian product of a family of sets A;
indexed by the elements i of a set I.

A" denotes the Cartesian product of copies of a set A indexed by a
non-negative integer n, and the elements are written as n-tuples (aj, ... ,a,).

|A| denotes the cardinal of a set A.

If m, n are integers then [m,n] denotes the set of integers i such that
m<igsn.

If «, y are ordinals then [«,7] and [a,7) respectively denote the set of
ordinals f with a <f<yand a<f <.

If I'is a set and m,, iel, are cardinals and m is a cardinal then
m = HCF,;;m; means that m is the largest cardinal which divides all the
m;. In practice, m is an integer, or equivalently some m; is an integer.

N,Z2*,7,Q,R,C, R", respectively, denote the positive integers, the non-

XXi



XXii Conventions

negative integers, the integers, the rationals, the reals, the complex numbers,
and Euclidean n-space.

Z, denotes the set consisting of two elements 0 and 1; it performs as a
set, a group, a ring, a Boolean ring, a field, and a discrete topological space.

Except where otherwise indicated, functions will be written on the left of
the argument, and composed accordingly. We write ¢:X —>Y or X 5 Y
to denote a function, and x+ ax to denote its action on elements. Here
a”'(y)={xeX|ax =y} for any yeY.

Except where otherwise specified, groups will be written multiplicatively,
and abelian groups will be written additively. If x, ye G then [x, y] denotes
the commutator x 'y~ 'xy; this should not be confused with the above
interval notation.

H < G means that H is a subgroup of G.

Rings are associative and have a 1; in all situations of interest, the 0 and
1 are distinct.
(Left or right) module actions respect the 1 of the ring.

M @ N denotes the direct sum of two modules, and @M ; denotes the
iel

direct sum of a family of modules M; indexed by the elements i of a set I.
If R is a ring, M a right R-module, and N a left R-module, then M ®; N
denotes the tensor product, viewed as an abelian group.

The numbering treats theorems, definitions, examples, remarks, etc. as
subsections, labelled, for example, as 2.9 Remarks, in Section IV.2 in
Chapter IV, and referred to as Remark 2.9 within Chapter IV, and as
Remark IV.2.9 within all other chapters. The end of such a subsection is
indicated by L.

References to the bibliography are by the author-date system, with
primes to distinguish publications by the same author in the same year.



