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Preface

Kolmogorov established the system of axioms for probability theory by Lebesgue’s
theories of measure and integration in 1933, which make theory of probability to be
the important tool of investigating the random or uncertainty phenomena. However, it
has been shown that such additivity assumption of probabilities or linear expectation
is not feasible in many areas of applications because the uncertainty and ambiguity
phenomena, for example, Allais and Ellsberg paradoxes. The mathematical theory of
non-additive measure and integral got its first important contribution with Choquet’s
Theory of Capacities in 1954. Since then, capacities and Choquet integral are studied
by many researchers, for example, Huber and Strassen(1973), Walley and Fine(1982),
Schmeidler(1989), Denneberg(1994), Maccheroni and Marinacci(2005), Chen(2010),
and so on. Peng investigated the theory of nonlinear expectations from a new point
of view in 2006. This theory not based on probability space, but on nonlinear expec-
tation space. Along with the notion of independence under sublinear expectation, the
central limit theorem under sublinear expectation was proved by using a deep interior
estimate of fully nonlinear partial differential equation, and G-Brownian motion as
well as G-It6 calculus are provided by Peng. From the representation of a sublinear
expectation, we know that there is a capacity induced by sublinear expectation. Mo-
tivated by the works of Kolmogorov, Choquet, Peng and Chen, we mainly investigate
the problems about the limit theories of capacities, G-Brownian motion, and G-It6
calculus as well as their applications in this book. We give a new urn model with
ambiguity and obtain strong laws of large numbers and central limit theorem for ca-
pacities, a weighted central limit theorem under sublinear expectations. Meanwhile,
a Berry-Esseen theorem under linear expectation is proved by borrowing PDE, some
properties about sublinear expectation martingale in discrete time and properties of
multi-dimensional G-Brownian motion are given. Next, under some integral-Lipschitz
assumptions, the stability theorems for G-SDE and G-BSDE are proved. The exis-
tence and uniqueness of the solution for forward and backward stochastic differential
equations driven by G-Brownian motion is also proved. Last but not least, stochastic
optimal control problems under G-expectation and optimal portfolio selection model
under volatility uncertainty are discussed, the optimal rules and mutual fund theorem
are presented. Specifically, this book consists of six chapters, whose main results are
summed up as follows.

In Chapter 1, we give a new ambiguity urn model and introduce capacities (V, v)
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as well as so-called maximum-minimum expectations (]E, E). Based on the ambiguity
urn model, we prove that for random variables {X;}1<i<n in ambiguity urn model
and any y € R, we have

. Sn
lim V (7 < y) = Ijy,00) (¥),

n—oo

n—oo

. S,
lim v (-;n < y) = Ijg,00)(Y)
and

lim U(MS&S,E) =1.
n—00 = n
Next we extend the ambiguity urn model to general case.

In Section 1.2, motivated by the work of Peng(2008), Li and Shi(2010), we investi-
gate a central limit theorem for weighted sum of independent random variables under
sublinear expectations and obtain the law of large numbers of independent random
variables under sublinear expectations. Using the method of proving weighted Cen-
tral Limit Theorem, we obtain a Berry-Esseen Theorem under Sublinear Expectation.
In Section 1.3, we prove a Berry-Esseen Theorem under linear Expectation by using
heat equation and Taylor expansion.

In Section 1.4, we investigate the Central Limit Theorem for capacities induced
by sublinear expectations as follows: Let {X;}{2, be a sequence of i.i.d. random
variables with E[X;] = E[—X;] = 0. Then

-1 1 o
% s E & — =
i © (ﬁ i1 e y) =g (7520050

and
1 n
lim C (% ;Xi < y) =v(y) = jnf Ep [I{f; esstsy}] ’

where y is a point at which V and v is continuous.

In Chapter 2, we introduce the orthogonal notion under £ and consider some
results about SL-submartingale as well as some useful inequalities. A typical result
is Doob’s inequality.

Peng (2006) introduced the G-Brownian motion and the related quadratic vari-
ation process in 2006. G-Brownian motion has many interesting properties which
nontrivially generalize the classical case. In Chapter 3, some new properties and inter-
esting estimations of mutual variation process for G-Brownian motion are presented,
Kunita-Watanabe inequalities and Tanaka formula for multi-dimensional G-Brownian
motion are obtained.
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In Chapter 4, we consider the stability theorems of G-stochastic differential equa-
tions and G-backward stochastic differential equations under integral-Lipschitz condi-
tions. Inspired by the method of Antonelli, under some suitable conditions, we prove
the existence and uniqueness of the solution of the following system:

t t t
Xt=a:+/ b(s,Xs,Ys)ds+/ h(s,Xs,Ys)d(B),+/ o(s, Xs,Ys)dBs,
0 0 0

. T T
Y,=E §+/ f(s,Xs,Ys)der/ g(s,xs,ys)d<B>s|m}, t [0, T),
i t

where the initial condition z € R, the terminal data £ € L% (Hr;R), and b, h,0, f, g
are given functions satisfying b(-,z,y), (-, 2,9), o(-,z,y), f(-,z,v), 9(-,x,y) € M
([0,T];R) for any (z,y) € R? and the Lipschitz condition.

In Section 4.2, we consider the exponential stability for G-stochastic differential
equations. Firstly, given an exponentially stable stochastic linear system

dX; = AX;dt, t>tg >0,
Xto s XO, tO > O,

where the initial condition Xo € L% (H; R™) , X = (X1, ,Xn)T, A is a constant
n x n matrix. Assume that some parameters are excited or perturbed by G-Brownian
motion, and the perturbed system has the form

dXt = AXtdt + O'(t,Xt)dBt, t 2 to 2 0,
Xto = XOa t() 2 Oa

where B; is a d dimensional G-Brownian motion, and ¢ : RT x R" x 2 — R"*¢
satisfies the conditions for the existence and uniqueness of the solution, its solu-
tion is denoted by X (¢, to, Xo), suppose there exist positive constants C and «, such

that for all z € R™ and all sufficiently large ¢, ||o(t,z)||? < Ce ?l4llt qs., and
, log [|e#*]|?
lim sup — < —a. Then

t—o00

2
lim sup lOg ”X(t$ to, XO)”

; : < —a g.s.,
—00

for all to > 0 and any X, € L% (Hy,; R™). Meanwhile, we also obtain a generalization
version.

In Section 4.3, we investigate the stochastic optimal control problems under G-
expectation and obtain dynamic programming principle: For any § € [0,T — t], we
have

u(t,z) = sup G::ffa[u(t + 4, X:fg”)].
v(-)EV
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We prove the value function u(t,z) is a viscosity solution of the following fully non-
linear second-order PDE:

Oyu(t,x) + H(8%xu, dyu,u, ) =0,
u(T, z) = 9(z),

where

H(02zu,0pu,u,x) = sup sup {(b(z,v)+ h(z,v)r)0su + l02(33,1))7°8qu
v(-)EV g2<r<a? 2

+ g(xi ’U;,’U)T + f(x?u’ v)}'

More complicated form can be found in Section 4.3.

Merton (1971) investigated the optimal portfolio selection problems under the
linear expectation and volatility is constant, in Chapter 5, an optimal portfolio se-
lection model under volatility uncertainty in the G-expectation space is established,
the expressions about the optimal investment and consumption rules are presented,
meanwhile, we also obtain the mutual fund theorem under volatility uncertainty. In
order to illustrate the optimal portfolios depend on the maximal and minimal volatil-
ity of underlying asset, in Section 5.4, we only consider two assets (stock and bond)
and particular utility function, the explicit optimal portfolio is given.

In Chapter 6, we present a method to solve stochastic differential equation driven
by G-Brownian motion without using G-It6 formula. Our method is mainly depending
on Frobenius’s Theorem. Many classical models in mathematical finance are investi-
gated to illustrate the method. As a by-product, this financial models are extended
to the case of G-Brownian motion.
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Chapter 1
Limit theory about capacity

1.1 Law of large numbers for capacity

Choquet(1954) introduced Choquet capacity theory and Choquet integral in 1954,
since then, Choquet capacity theory was greatly developed not only in theories but
also in applications. From theoretical side, Huber and Strassen(1973) considered Min-
imax test and Neyman-Pearson lemma for capacity in 1973, Wasserman and Kadane
(1990) proved Bayes theorem for 2-alternating capacity in 1990, Denneberg (1994)
systematic studied nonadditive measure and Choquet integral in 1994, Walley and
Fine(1982) considered frequency explanation for upper and lower probability in 1982,
Wakker(2000) gave a unified theory of imprecise probability in 2000, Maccheroni and
Marinacci (2005) proved strong law of large numbers for completely monotone ca-
pacity in 2005, Chen(2010) gave strong law of large numbers for capacity induced by
sublinear expectations in 2010. In the application, Huber (1973) stated the use of
Choquet capacities in statistics in 1973, Schmeidler(1989) discussed subjective proba-
bility and expected utility without additivity in 1989, Dow and Werlang(1994a, 1994b)
considered the learning and Nash equilibrium problems under Knightian uncertainty
in 1994, Marinacci(1999) considered the limit laws for non-additive probabilities and
their frequentist interpretation in 1999, Chen and Kulperger (2006) discussed the
Minimax pricing and Choquet pricing in 2006, more applications can be found in
Ghirardato (1997), Wakker(2001), Chen and Epstein(2002), Epstein and Schneider
(2003), and so on. In this Section, we first establish ambiguity urn model, and then
prove the law of large numbers for corresponding capacity.

1.1.1 Ambiguity urn models

We consider n(n > 1) urns, the i-th urn contains W; white balls and B; black balls, we
assume that W;+B; = N and W; € [6, 6], § and 6 are positive integers, 0 < § < § < N.
Let 2 = {W, B}, F = {2, {W},{B}, 2} and let X, be a random variable, if we draw
a white ball from the i-th urn, then X; = 1, if we draw a black ball from the i-th urn,
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then X; = 0. We know that

] :
Pu(Xi=1)=pi, Pu(Xi=0)=1-pi, mpe€ | = ~|=[kp, 1<i<n
N’'N
Let (2, F, P,,) be a probability spaces, we define their product space, denote

0" = X 2 X -+ X 2y, where 2; = 2 for all i € [1,n],

denote
Fr:=0(A1 x A2 X ---x Ay), Ai€F;, Fi=Fforallie]lln],
and . .
PH(A) :=HPI»L¢(A‘i)’ A=HA1'7 AiEFa
i=1 i=1
6 = {(pu1,p2,- - s bn) s p < i < B, 1 < TS},
and define

V(A):=sup P,(4), A=[]A, AierF,
neoé

i=1

v(A) == jnf P,(A), A= i[[lA,., A; € F.
It is obviously that V and v are two capacities (Definition 1.1.1) defined on
(2™, F™). In the above construction the integer n can be also infinite.

Definition 1.1.1 (Capacity, Choquet(1954)) A set function C: F — [0,1] is
called a continuous capacity if it satisfies

1) Cw)=0,C(2) =1,

(2) if AC B, A, B € F, then C(A) < C(B),

(3) if An T (1)A, then C(4a) T (1)C(A).

The pair of so-called maximum-minimum expectations (I, E) can are defined by

E[X;):== sup Ep, [Xi], E[Xi]:= inf Ep, [Xi],

wi€lp,a] ni€lp,A]
where Ep, denotes the classical expectation under probability F,,, then we have
E[X;] = i, and E[X;] = p. Similarly, for any function ¢, we can define

n n

> Xi > X
]ﬁ: =1 - E $=1 ;
¥ % ilelg Py | P %
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> Xi DX
= i=1

E =1 _||:=inf E
Y| n pee "B P Tp

1.1.2 Law of large numbers for Bernoulli trials with ambiguity

Definition 1.1.2 Repeated independent trials are called Bernoulli trials with
ambiguity if there are only two possible outcomes for each trial and their probabilities
could be different in each trial.

Theorem 1.1.3 Let the event A be n Bernoulli trials with ambiguity in £(0 <
k < n) drawing the white ball. Then

V(A) = sup Z Huf‘(l — pa) T,

BEO 4 b Fan=ki=1

n
v(A) = inf B — ),
(4) “Eem_%:kgu, (1~ i)
where z; only take either 0 or 1.
In particular, the maximum probability of no success is (1— )" and the minimum
probability of no success is (1 — )", and the maximum probability of at least one
success is 1—(1— /)" and the minimum probability of at least one success is 1—(1—px)".

Proof
V(A) = sup P,(A) = sup P, X, =k
(4) = sup Pu(4) = sup (z; )

=sup Y. P(Xi=z,Xp=33 - ,Xn=2n)
”"eex1+---+zn=k

= sup Z H Py (Xi=2;)

“€9z1+~~-+zn=ki=1

n
- ; 1—
D S | R
HE® 4 4o tan=ki=1

Theorem 1.1.4 For above random variables {X;,7 > 1} and any function ¢
satisfies |¢'(z) — ¢’ (y)| < K|z —y|* (0 < a < 1,K > 0), we have
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In order to prove Theorem 1.1.4, we first prove the following lemma.

n n
Lemma 1.1.5 Denote S, := ZX,- and S, = Z.f,-, where &; is a sequence
i=1 =1
of independent variables under probability P and follows one-point distribution with
parameter u;, then for any continuous function ¢, and z € R,

|Ep,[p(z + Sn)] — Eplo(@ + Sn)l| <D sup |Ep, [p(z + X)] - Brlp(a + &)
i=1 Te

Proof We denote Q = P,, fi(z) := Ep, [p(z+ X;)] and g;(z) := Ep[p(z+&)),
then
Eg ® Ep[p(z + Sn + 5,)] = Ep ® Eglp(z + Sn + Sn)],

thus
|Ep,[p(z + Sn)] = Ep[p(z + Sn)]|
<|Eglp(z + Sn)] — Eq ® Ep[p(z + Sn—i-1+ &)
+|Eq@ ® Ep[p(z + Sn-i—1 +&n)] — Eq ® Ep[p(z + Sn—i—2 + &n + &n—1)]|
+ ca
+ |Eq ® Eplp(z + X1+ Sn—1)] — Eplp(z + 5y)]|

<Z sup |fi(@) - gi(a)|

i=1 %€

= Z sup |Ep,, [p(z + Xi)] — Ep[p(z + &)

l(E

Proof of Theorem 1.1.4 Since

n n n

>x S >
1) =1 — su z)=sup E = — su =l
el = Kz}éuw() up Ep, o | =, spe |

(1.1)

and
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n n n \
37 5 S
E = — su z) = sup Ep A=l — su =
n gswé)ﬁw( ) uég e [¥ n ueg(p n
n n
sl (Se
2 _ E =1 . i=1
:lelg P |¥ n ¥ = ’
1.2)
then
n n n
EX" ZXZ' Zﬂz
E =t — su z)| < sup |E =l - =1
- R Egzgﬁw( ) sup \Bp, | | = o
By Lemma 1.1.5, as n — 0o, we have
n n
> X > mi
E|p|z+ =L —supyp | z+ =L
n ped
n n \
X S
<sup |Ep, | &4 = —plz+EL
HEB
n X i
< su sup |Ep, w+—z)]— m+—z)
<spyoep|en, [o (o4 3)] -0 (o4
= X; X;
= su sup |Ep, . '(z+0-—1)— ’ac)—’]
#eggzeg Fles [<<P n v () n
_ ’ PR ﬂ]
(¢ (z+05) —¢@)
“ _Ep, [ Xi|'Y] + ||t
< su K—*
MGI;; plta
—0. (1.3)

Hence
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>

lim E ¢ | z+ = sup ¢(z+y).
n=ree L p<Y<KA

Especially,
>
lim E |o | =2 = sup ¢(y).
neeo 1 p<y<p

Remark 1.1.6 For any € > 0, we can get multi-variant version of Weierstrass
theorem as follows:

n
% P W Zﬂ'i
So(f) ¥ Muwa-wr=-e|=-|l<s a9
k=0

T1+-+Ta=ki=1

where ¢ is continuous function in [0, 1] and z; only take either 1 or 0. In particular,
if p; = p for all 4, then it is classical Weierstrass theorem.

Lemma 1.1.7 Let X be a random variable on a sublinear expectation space
(1, H1,E) and € be a one-point distributed random variable with parameter u on
(22, Hz, Ep), then for any function ¢, we have

E® Ep[p(X +¢)] = Ep ® Ep(X +¢)].
Proof We denote g(z) := E[p(X + z)],z € R, since

E® Eplp(X +8)] = E[Ep[p(e + )]a=x] = Elp(e + p)a=x] = Elp(X + p)]

and

Ep @ E[p(X +€)] = Ep[Elp(X +y)y=¢]] = Eplg(€)] = g(u) = Blp(X + p)],

then
E® Eplo(X + €)] = Ep ® E[p(X + £)).

Lemma 1.1.8 Let {X;}$2; and {£}2, be a sequence of i.i.d. random vari-

~

ables on a sublinear expectation space ({21, Hi,E) and classical expectation space

n n
(£22, Ha, Ep), respectively. Denote S, := ZXi and S, = Z&, where &; follows

i=1 i=1
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one-point distribution with parameter ; under probability P, then for any bounded
and monotone ¢, and = € R,

[Elp(z + Sn)] — Eple(z + Sa)]| < n sup [Elp(z + X1)] — Eplp(z + &1)]|-

Proof Weset Sp =Sy =0, f(z) := E[p(z+Xn_:)] and g(z) := Ep[p(c+&i+1)],

from Lemma 1.1.7, we have

|Elp(z + Sn)] — Eple(z + Sn)]l
n—1
= Z[]E ® Eplp(x + Sn—i + 8)] —E® Eplp(z + Sn—i—1 + Sita )]]‘
i=0
n—1
=) (B, @ Elp(x + Sn—i + 5:)] —E® Eplp(z + Sn—i—1 + Sit1)]]

=0

n—1
=) _[Ep ®E[p(z + Sp—i-1+ Si + Xn—i)] — E® Ep[p(x + Sp—i-1 + 5 + €¢+1)]]‘
=0
n—1 R B R B
=) [E® Ep[f(z+ Sn—i—1 + 5:)] —E ® Eplg(z + Sn—i—1+ 5i)]]
=0

n—1 R ~ N
< Z EQ® Ep[|f(z + Sn—i—1+ Si) — g(x + Sp—i—1 + Si)|]

=0

<nsup |f(z) — g(z)|
z€ER

=nsup [Elp(z + Xn—i)] — Eplp(z + &it1)]]
=n sup [Elp(z + X1)] — Ep[p(z + &1)]|.

Theorem 1.1.9 (Law of large numbers for capacity) For random variables
{Xi}1<ign in ambiguity urn model and any y € R, we have

. S
I v (2 <y) = 1w, (19)
x Sp
Jm v (% <) = Fpeo®) (16)
and s
nlingov (y_ -4 —T-:—’ < ﬁ) =3 1 (1.7)

Proof The proof is divided into three steps.
Stepl For any y € R, we define ¢, (z) by

—¢2

1 nd (—e+he(z))
oota) = 7= | e dh
—o0
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where
=Z+Y; T<Y-—¢

he(z) = (- 2$+2y—e)(—$+y+6)2

4e?
0, rTZ2y+e.

y—e<zr<y+e,

We first prove the following equality

Jim (B [en (32)] - Brlente) =0 (1.8

where £ follows one-point distribution with parameter 1 under probability P.
According to the expressions of function ¢,, and h., we know that

- TLY—¢,
’ _ < = s
he(z) = (a:+y+e;t(32m+y 25), y—e<z<y-+e,
0, T2y+e
and "
—, yY—e<zr<y+e,
hi(z) ={ 2
Oa xe(—oo,y—-e]U[y—i-e,oo),
thus

Ql(@) = e~ T =Hhe@’[ndh(z) — nd(—¢ + he(2))(hL(2))?]
T F = (nl(—c—z+y), z<y-e

- 3
- e—32C(—€+h:(I))2 n%% = n%ge(l‘) y Yy—e<z < y+€,

0, T2 y+e,
(—2z+2y—e)(~z+y+e)?—4e¥|(-z+y+e)(—z+y— 2{5)2

16e6
If z < y—¢, the extreme point of |¢(z)| is £ = y—e—n#, then sup @ ()] < ni.

where g¢(z) :=

Ify—e<zxz<y+e, then

ph@)] < nd o+ ndlge(a)] < nd o +16nd,

1
4

3
namely, sup lebiE)| & n o + 16nf. From above analysis, we have

z
8

Bup lon (@) <

where K is a constant.



