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Preface

This book started in 1993, when the first author began to reorganize the teaching
of ODE:s at Rice University. It soon became apparent that a textbook was needed
that brought to the students the expanded outlook that modern developments in the
subject required, and the use of technology allowed. Over the ensuing years this
book has evolved.

The mathematical subject matter of this book has not changed dramatically
from that of many books published ten or even twenty years ago. The book strikes
a balance between the traditional and the modern. It covers all of the traditional
material and somewhat more. It does so in a way that makes it easily possible, but
not necessary, to use modern technology, especially for the visualization of the ideas
involved in ordinary differential equations. It offers flexibility of use that will allow
instructors at a variety of institutions to use the book. In fact, this book could easily
be used in a traditional differential equations course, provided the instructor care-
fully chooses the exercises assigned. However, there are changes in our students, in
our world, and in our mathematics that require some changes in the ODE course,
and the way we teach it.

Our students are now as likely to be majoring in the biological sciences or
economics as in the physical sciences or engineering. These students are more
interested in systems of equations than they are in second order equations. They
are also more interested in applications to their own areas rather than to physics or
engineering.

Our world is increasingly a technological world. In academia we are struggling
with the problem of adapting to this new world. The easiest way to start a spirited
discussion in a group of faculty is to raise the subject of the use of technology in our
teaching. Regardless of one’s position on this subject, it is widely agreed that the
course where the use of technology makes the most sense, and where the impact of
computer visualization is the most beneficial, is in the study of ODEs. The use of
computer visualization pervades this book. The degree to which the student and the
instructor are involved is up to the instructor.

The subject of ordinary differential equations has progressed, as has all of math-
ematics. To many it is now known by the new name, dynamical systems. Much of
the progress, and many of the directions in which the research has gone, have been
motivated by computer experiments. Much of the work is qualitative in nature. This
is beautiful mathematics. Introducing some of these ideas to students at an early
point is a move in the right direction. It gives them a better idea of what mathemat-
ics is about than the standard way of discussing one solution method after another.
It should be emphasized that the introduction of qualitative methods is not, in itself,
a move to less rigor.
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The Use of Technology

The book covers the standard material with an appropriate level of rigor. However,
it enables the instructor to be flexible in the use of modern technology. Available to
all, without the use of any technology, is the large number of graphics in the book
that display the ideas in ODEs. At the next level are a large number of exercises that
require the student to compute and plot solutions. For these exercises, the student
will have to have access to computer (or calculator) programs that will do this easily.

The tools needed for most of these exercises are two. The student will need
a program that will plot the direction field for a single differential equation, and
superimpose the solution with given initial conditions. In addition, the student will
need a program that will plot the vector field for an autonomous planar system of
equations, and superimpose the solution with given initial conditions. Such tools
are available in MATLAB, Maple, and Mathematica. For many purposes it will be
useful for the students to have computer (or calculator) tools for graphing functions
of a single variable.

The book can also be used to teach a course in which the students learn nu-
merical methods early and are required to use them regularly throughout the course.
Students in such a course learn the valuable skill of solving equations and systems
of equations numerically and interpreting the results using the subject matter of the
course. The treatment of numerical methods is somewhat more substantial than in
other books. However, just enough is covered so that readers get a sense of the
complexity involved. Computational error is treated, but not so rigorously as to bog
the reader down and interrupt the flow of the text. Students are encouraged to do
some experimental analysis of computational error.

Modeling and Applications

It is becoming a common feature of mathematics books to include a large list of
applications. Usually the students are presented with the mathematical model and
they are required to apply it to a variety of cases. The derivation of the model is
not done. There is some sense in this. After all, mathematics does not include all
of the many application areas, and the derivation of the models is the subject of the
application areas. Furthermore, the derivations are very time consuming.

However, mathematicians and mathematics are part of the modeling process.
It should be a greater part of our teaching. This book takes a novel approach to
the teaching of modeling. While a large number of applications are covered as
examples, in some cases the applications are covered in more detail than is usual.
There is a historical study of the models of motion, which demonstrates to students
how models continue to evolve as knowledge increases. There is an in-depth study
of several population models, including their derivation. Included are historical
examples of how such models were applied both where they were appropriate and
where they were not. This demonstrates to students that it is necessary to understand
the assumptions that lie behind a model before using them, and that any model must
be checked by experiments or observations before it is accepted.

In addition, models in personal finance are discussed. This is an area of po-
tential interest to all students, but not one that is covered in any detail in college
courses. Students majoring in almost all disciplines approach these problems on an
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even footing. As a result it is an area where students can be required to do some
modeling on their own.

Linear Algebra and Systems

Most books at this level assume that students have an understanding of elementary
matrix algebra, usually in two and three dimensions. In the experience of the authors
this assumption is not valid. Accordingly, this book devotes a chapter to matrix al-
gebra. The topics covered are carefully chosen to be those needed in the study of
linear systems of ODEs. With this chapter behind them, the instructor can cover
linear systems of ODEs in a more substantive way. On the other hand an instruc-
tor who is confident in the knowledge of the students can skip the matrix algebra
chapter.

Projects

There are a number of projects discussed in the book. These involve students in an
in-depth study of either mathematics or an application that uses ODEs. The projects
provide students with the opportunity to bring together much of what they have
learned, including analytical, computational, and interpretative skills. The level of
difficulty of the projects varies. More projects will be made available to users of this
book as they are developed.

Varied Approaches Possible

It should be noticed that the book has three authors from three very different schools.
The ODE courses at these institutions are quite different. Indeed, there is no stan-
dard ODE course across the country. The authors set the understandable goal of
writing a book that could be used in the ODE courses at each of their own institu-
tions. Meeting this goal required some compromises, but the result is a book that is
flexible enough to allow its use in a variety of courses at a variety of institutions.

On one hand, it is possible to use the book and teach a more or less standard
course. The standard material is covered in the standard order, with or without the
use of technology.

However, at Rice University, after the first three chapters the class moves to
numerical methods, and then to matrix algebra. This is followed by linear systems.
Once this material is covered, higher-order equations, including the second-order
equations that are important in science and engineering, are covered as examples
of systems. This approach allows the students to use linear algebra throughout the
course, thereby gaining a working knowledge of the subject. Technology is used
throughout to enhance the students’ understanding of the mathematical ideas.

In another approach, used at College of the Redwoods, the chapter on numerical
methods is done early, while discussing the qualitative analysis of single first-order
equations. The students are taught the analytical, qualitative, and numerical ap-
proaches before moving on to Chapter 3. The chapter on matrix algebra is covered
next. There follows an introduction of systems, both linear and nonlinear. Next, they
return to second-order equations, including undetermined coefficients, the driven,
damped oscillator, resonance, and so forth. The course ends with more on nonlinear
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systems. The ultimate goal is to get the students to use nullcline analysis and the
Jacobian approximation to sketch a phase portrait without the use of software.

Mathematical Rigor

Mathematical ideas are not dodged. Proofs are given when the proof will add to
the students’ understanding of the material. Difficult proofs, or those that do not
add to a student’s understanding, are avoided. Suggestions of how to proceed, and
examples that use these suggestions, are usually offered as motivation before one
has to wade through the abstraction of a proof. The authors believe that proof is
fundamental to mathematics, and that students at this level should be introduced
gently to proof as an integral part of their training in mathematics. This is true for
the future engineer or doctor as well as for the math major.

Supplements

Instructors who use this book will have available a number of resources. There
are an Instructor’s Solution Manual, containing the complete solutions to all of the
exercises, and a Student’s Solution Manual with the solutions to the odd-numbered
exercises.

One way to meet the software needs of the student is to use the programs
dfield and pplane, written by the first author for use with MATLAB . These
programs are described in the book Ordinary Differential Equations Using MAT-
LAB (ISBN 0-13-011381-6), written by two of the authors of this book. That book
is available shrink-wrapped with this one at no extra cost (ISBN 0-13-059318-4).
However, it should be emphasized that it is not necessary to use dfield and
pplane with this book. There are many other possibilities.

The Website http://www.prenhall.com/polking is a resource that will ultimately
become very valuable to both instructors and students. Interactive java versions of
the direction field program dfield and the phase plane program pplane will be
accessible from this site. It will also provide animations of the examples in the book,
links to other web resources involving differential equations, and true-false quizzes
on the subject matter. As additional projects are developed for use with the book,
they will be accessible from the Website.
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ntroduction to
)ilterential Fquations

With the systematic study of differential equations, the calculus of functions of
a single variable reaches a state of completion. Modeling by differential equations
greatly expands the list of possible applications. The list continues to grow as we
discover more differential equation models in old and in new areas of application.
The use of differential equations makes available to us the full power of the calculus.

When explicit solutions to differential equations are available, they can be used
to predict a variety of phenomena. Whether explicit solutions are available or not,
we can usually compute useful and very accurate approximate numerical solutions.
The use of modern computer technology makes possible the visualization of the
results. Furthermore, we continue to discover ways to analyze solutions without
knowing the solutions explicitly.

The subject of differential equations is solving problems and making predic-
tions. In this book, we will exhibit many examples of this—in physics, chemistry,
and biology, and also in such areas as personal finance and forensics. This is the
process of mathematical modeling. If it were not true that differential equations
were so useful, we would not be studying them, so we will spend a lot of time on
the modeling process and with specific models. In the first section of this chapter
we will present some examples of the use of differential equations.

The study of differential equations, and their application, uses the derivative

and the integral, the concepts that make up the calculus. We will review these ideas
starting in Sections 1.2 and 1.3.
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Introduction to Differential Equations

1.1 Differential Equation Models

To start our study of differential equations, we will give a number of examples. This
list is meant to be indicative of the many applications of the topic. Itis far from being
exhaustive. In each case, our discussion will be brief. Most of the examples will be
discussed later in the book in greater detail. This section should be considered as
advertising for what will be done in the rest of the book.

The theme that you will see in the examples is that in every case we compute
the rate of change of a variable in two different ways. First there is the mathematical
way. In mathematics, the rate at which a quantity changes is the derivative of that
quantity. This is the same for each example. The second way of computing the rate
of change comes from the application itself and is different from one application to
another. When these two ways of expressing the rate of change are equated, we get
a differential equation, the subject we will be studying.

Mechanics

Isaac Newton was responsible for a large number of discoveries in physics and math-
ematics, but perhaps the three most important are the following:

o The systematic development of the calculus. Newton’s achievement was the
realization and utilization of the fact that integration and differentiation are
operations inverse to each other.

o The discovery of the laws of mechanics. Principal among these was Newton’s
second law, which says that force is equal to the rate of change of momentum
with respect to time. Momentum is defined to be the product of mass and
velocity, or mv. Thus the force is equal to the derivative of the momentum. If
the mass is constant,

where a is the acceleration. Newton’s second law says that the rate of change
of momentum is equal to the force F. Expressing the equality of these two
ways of looking at the rate of change, we get the equation

F = ma, (LA

the standard expression for Newton’s second law.

o The discovery of the universal law of gravitation. This law says that any body
with mass M attracts any other body with mass m directly toward the mass M,
with a magnitude proportional to the product of the two masses and inversely
proportional to the square of the distance separating them. This means that
there is a constant G, which is universal, such that the magnitude of the force
is

GMm
72

: (1.2)

where r is the distance between the two bodies.
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All of these discoveries were made in the period between 1665 and 1671. The
discoveries were presented originally in Newton’s Philosophiae Naturalis Principia
Mathematica, better known as Principia Mathematica, published in 1687.

Newton’s development of the calculus is what makes the theory and use of
differential equations possible. His laws of mechanics create a template for a model
for motion in almost complete generality. It is necessary in each case to figure out
what forces are acting on a body. His law of gravitation does just that in one very
important case.

The simplest example is the motion of a ball thrown into the air near the surface
of the earth. If x measures the distance the ball is above the earth, then the velocity
and acceleration of the ball are

dx dv  d*x
v=— and a=—=—.,
dt dt dt?

Since the ball is assumed to move only a short distance in comparison to the radius
of the earth, the force given by (1.2) may be assumed to be constant. Notice that m,
the mass of the ball, occurs in (1.2). We can write the force as F = —mg, where
g = GM/r?* and r is the radius of the earth. The constant g is called the earth’s
acceleration due to gravity. The minus sign reflects the fact that the displacement x
is measured positively above the surface of the earth, and the force of gravity tends
to decrease x. Newton’s second law, (1.1), becomes

dv d*x
—-mg =ma=m—=m :
J dt dr?
The masses cancel, and we get the differential equation
d’x
g (1.3)

which is our mathematical model for the motion of the ball.

The equation in (1.3) is called a differential equation because it involves an
unknown function x(z) and at least one of its derivatives. In this case the highest
derivative occurring is the second order, so this is called a differential equation of
second order.

A more interesting example of the application of Newton’s ideas has to do with
planetary motion. For this case, we will assume that the sun with mass M is fixed
and put the origin of our coordinate system at the center of the sun. We will denote
by x(z) the vector that gives the location of a planet relative to the sun. The vector
x(t) has three components. Its derivative is

dx
V() — i’
which is the vector valued velocity of the planet. For this example, Newton’s second
law and his law of gravitation become
d*x GMm x
Mm—— == ==
dr? ]2 |x|
This system of three second-order differential equations is Newton’s model of

planetary motion. Newton solved these and verified that the three laws observed by
Kepler follow from his model.
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Population models

Consider a population P(z) that is varying with time.! A mathematician will say
that the rate at which the population is changing with respect to time is given by the
derivative

dp

dt’
However, the population biologist will say that the rate of change is roughly propor-
tional to the population. This means that there is a constant r, called the reproductive
rate, such that the rate of change is equal to r P. Putting together the ideas of the
mathematician and the biologist, we get the equation

— =rP. 1.4
e (1.4)
This is an equation for the function P(t). It involves both P and its derivative, so it
is a differential equation. It is not difficult to show by direct substitution into (1.4)
that the exponential function
Pit)= Poe"

is a solution. Thus, assuming that the reproductive rate r is positive, our population
will grow exponentially.

If at this point you go back to the biologist he or she will undoubtedly say that
the reproductive rate is not really a constant. While that assumption works for small
populations, over the long term you have to take into account the fact that resources
of food and space are limited. When you do, a better model for the the reproductive
rate is the function 7(1 — P/K), and then the rate at which the population changes
is better modeled by r(1 — P/K)P. Here both r and K are constants.

When we equate our two ideas about the rate at which the population changes,
we get the equation

dP

——=r({l—P/K)P. 1.5
P /K) (1.5)
This differential equation for the function P(¢) is called the logistic equation. It is
much harder to solve than (1.4), but it does a creditable Jjob of predicting how single
populations grow in isolated circumstances.

Pollution

Consider a lake that has a volume of V = 100 km?. It is fed by an input river, and
there is another river which is fed by the lake at a rate that keeps the volume of the
lake constant. The flow of the input river varies with the season, and assuming that
t = 0 corresponds to January 1 of the first year of the study, the input rate is

r(t) = 50 + 20 cos(2m (t — 1/4)).

Notice that we are measuring time in years. Thus the maximum flow into the lake
occurs when 7 = 1/4, or at the beginning of April.

"For the time being, the population can be anything—humans, paramecia, butterflies, etc. We will be
more careful later.
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In addition, there is a factory on the lake that introduces a pollutant into the lake
at the rate of 2 km?/year. Let x(¢) denote the total amount of pollution in the lake
at time 7. If we make the assumption that the pollutant is rapidly mixed throughout
the lake, then we can show that x(7) satisfies the differential equation

dx
;g 2 — (524 20cos(2n(t — 1/4)))

X
100°

This equation can be solved and we can then answer questions about how dan-
gerous the pollution problem really is. For example, if we know that a concentration
of less than 2% is safe, will there there be a problem? The solution will tell us.

The assumption that the pollutant is rapidly mixed into the lake is not very
realistic. We know that this does not happen, especially in this situation, where
there is a flow of water through the lake. This assumption can be removed, but to do
so, we need to allow the concentration of the pollutant to vary with position in the
lake as well as with time. Thus the concentration is a function c(t, x, y, z), where
(x, y, z) represents a position in the three-dimensional lake. Instead of assuming
perfect mixing, we will assume that the pollutant diffuses through water at a certain
rate.

Once again we can construct a mathematical model. Again it will be a differ-
ential equation, but now it will involve partial derivatives with respect to the spatial
coordinates x, y, and z, as well as the time 7.

Personal finance

How much does a person need to save during his or her work life in order to be sure
of a retirement without money worries? How much is it necessary to save each year
in order to accumulate these assets? Suppose one’s salary increases over time. What
percent of one’s salary should be saved to reach one’s retirement goal?

All of these questions, and many more like them, can be modeled using dif-
ferential equations. Then, assuming particular values for important parameters like
return on investment and rate of increase of one’s salary, answers can be found.

Other examples

We have given four examples. We could have given a hundred more. We could talk
about electrical circuits, the behavior of musical instruments, the shortest paths on
a complicated-looking surface, finding a family of curves that are orthogonal to a
given family, discovering how two coexisting species interact, and many others.

All of these examples use ordinary differential equations. The applications of
partial differential equations go much farther. We can include electricity and mag-
netism; quantum chromodynamics, which unifies electricity and magnetism with
the weak and strong nuclear forces; the flow of heat; oscillations of many kinds,
such as vibrating strings; the fair pricing of stock options; and many more.

The use of differential equations provides a way to reduce many areas of appli-
cation to mathematical analysis. In this book, we will learn how to do the modeling
and how to use the models after we make them.
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EXERCISES

The phrase “y is proportional to x” implies that y is related to x via the equation
y = kx, where k is a constant. In a similar manner, “y is proportional to the
square of x” implies y = kx?, “y is proportional to the product of x and z” implies
y = kxz, and “y is inversely proportional to the cube of x” implies y = k/x>. For
example, when Newton proposed that the force of attraction of one body on another
is proportional to the product of the masses and inversely proportional to the square
of the distance between them, we can immediately write

GMm
;)
where G is the constant of proportionality, usually known as the universal gravita-

tional constant. In Exercises 1-10, use these ideas to model each application with a
differential equation. All rates are assumed to be with respect to time.

Hi=

’

1. The rate of growth of bacteria in a petri dish is proportional to the number of
bacteria in the dish.

2. The rate of growth of a population of field mice is inversely proportional to the
square root of the population.

3. A certain area can sustain a maximum population of 100 ferrets. The rate of
growth of a population of ferrets in this area is proportional to the product of the
population and the difference between the actual population and the maximum
sustainable population.

4. The rate of decay of a given radioactive substance is proportional to the amount
of substance remaining.

5. The rate of decay of a certain substance is inversely proportional to the amount
of substance remaining.

6. A potato that has been cooking for some time is removed from a heated oven.
The room temperature of the kitchen is 65°F. The rate at which the potato
cools is proportional to the difference between the room temperature and the
temperature of the potato.

7. A thermometer is placed in a glass of ice water and allowed to cool for an ex-
tended period of time. The thermometer is removed from the ice water and
placed in a room having temperature 77°F. The rate at which the thermometer
warms is proportional to the difference in the room temperature and the tem-
perature of the thermometer.

., 8. A particle moves along the x-axis, its position from the origin at time 7 given

by x(t). A single force acts on the particle that is proportional to but opposite
the object’s displacement. Use Newton’s law to derive a differential equation
for the object’s motion.

@/‘ 9. Use Newton’s law to develop the equation of motion for the particle in Exercise

8 if the force is proportional to but opposite the square of the particle’s velocity.

10. Use Newton’s law to develop the equation of motion for the particle in Exercise
8 if the force is inversely proportional to but opposite the square of the particle’s
displacement from the origin.



