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Preface

This book aims at providing a concise presentation of Stochastic Calculus with
some of its applications in Finance, Engineering and Science. The diversity of
applications are reflected in the range of methods covered in the text.

During the past twenty years, there has been an increasing demand for
tools and methods of Stochastic Calculus in various disciplines. One of the
greatest demands appears to have come from the growing area of Mathematical
Finance where Stochastic Calculus is used for pricing and hedging of financial
derivatives, such as options. In Engineering, most popular applications of
Stochastic Calculus are in filtering and control theory. In Physics, Stochastic
Calculus is used to study the effects of random excitations on various physical
phenomena. In Biology, Stochastic- Calculus is used to model the effects of
stochastic variability in reproduction and environment on populations.

From an applied perspective Stochastic Calculus can be loosely described
as a field of Mathematics that is concerned with infinitesimal calculus on non-
differentiable functions. The need for this calculus comes from the necessity to
include unpredictable factors into modelling. This is where probability comes
in, and the result is a calculus for random functions or stochastic processes.
As such, most ideas and techniques in Stochastjc Calculus come from the
Stochastic Processes theory.

This is a mathematical text which presents a highly techmcal ares, yet only
a basic knowledge of calculus and probability is required for using the book.
This text is aimed at taking the reader from a fairly low technical level to a
sophisticated one with a reasonable gradient. This is achieved by making use
of many solved examples and by giving simple heuristic ideas before precise
results are stated and proved. I tried to make the presentation as simple as
possible while keeping it mathematically correct. Oversimplification in this
field tends to lead to mistakes. Simple proofs are usually presented in order to
exercise the new tools and techniques. By avoiding some of the more technical
proofs or their details (for which references to texts are given), the reader
arrives at advanced results much sooner. These results are then used for
applications.
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This text presumes less initial knowledge than most texts on the subject
(Métivier (1982), Dellacherie and Meyer (1982), Protter (1992), Liptser and
Shiryayev (1989), Jacod and Shiryayev (1987), Karatzas and Shreve (1988),
Stroock and Varadhan (1979), Revuz and Yor (1991), Rogers and Williams
(1990)) however, it still presents a fairly complete and mathematically rigorous
treatment of Stochastic Calculus for continuous and discrete processes.

Abstract theory becomes alive in applications. Completely unrelated ap-
plied problems have their solutions rooted in the same mathematical result,
for example, the problem of pricing of an option in Finance and the problem
of optimal filtering in Engineering, both rely on the martingale representation
property of Brownian motion. The reader interested mainly in applications
may start from applications and consult theoretical results as the need arises,
for example, a reader interested in Finance, may start from the chapter on
Finance (chapter 11).

A brief description of the contents follows. The first chapter presents some
key results of Calculus in order to have some continuity of ideas and results
readily available for later use. Basic concepts of Probability Theory are given
in Chapter 2. Some results of this chapter may be skipped and referred to
later. In Chapter 3, two main stochastic processes used in Stochastic Calculus
are given: Brownian motion (for calculus of continuous processes) and Poisson
process (for calculus of processes with jumps). Integration with respect to
Brownian motion and closely related processes (Itd processes) is introduced
in Chapter 4. It allows one to define a stochastic differential equation. Such
equations arise in applications when a random noise is introduced into ordinary
differential equations. Stochastic differential equations are treated in Chapter
5. Diffusion processes arise as solutions to stochastic differential equations,
they are presented in Chapter 6. As the name suggests, diffusions describe a
real physical phenomenon, and are met in many real life applications. Chapter
7 contains information about martingales, examples of which are provided by
1td processes and compensated Poisson processes, introduced in earlier chap-
ters. Main tools of stochastic calculus include optional stopping, localization
and martingale representations. These are abstract concepts, but they arise
in applied problems where their use is demonstrated. Chapter 8 gives a brief
account of calculus for most general processes called semimartingales. Ba-
sic results include It6’s formula and stochastic exponential. The reader have
already met these concepts in Brownian motion calculus given in Chapter
4. Chapter 9 treats Pure Jump processes, where they are analyzed by using
compensators. The change of measure is given in Chapter 10. This topic is
important in mathematical Finance (for the problem of option pricing), and in
inference for stochastic processes (for finding likelihoods). Chapters 11, 12 and
13 are devoted to applications. Chapter 11 gives an application to mathemat-
ical Finance, where the problem of pricing of financial derivatives (including
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exotic and interest rates derivatives) is presented and solved. Applications in
Biology are given in Chapter 12. They include the branching diffusion model,
Birth-Death processes with stabilizing rates, and diffusion models arising in
Population Genetics. The filtering problem is presented as an application in
Engineering. Random perturbations to two-dimensional differential equations
are given as an application in Physics. These are covered in Chapter 13. Ex-
ercises are placed at the end of each chapter.

This text can be used for a variety of courses in stochastic calculus. The ap-
plication to Finance is extensive enough to use it for a course in mathematical
Finance and for self studies. This text is suitable for advanced undergraduate
students, graduate students as well as research workers and practioners.
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Chapter 1

Preliminaries From
Calculus

In this chapter some basic concepts of the infinitesimal calculus needed for
further use are surveyed. The concept of variation of a function is central for
stochastic calculus. Some more advanced results from the theory of functions
are also given, so that the reader is not too surprised when sumla.r results in
stochastic calculus are encountered.

1.1 Continuous and Differentiable Functions

A function g is called continuous at the point ¢ = tg if the increment of g over
small intervals is small,

Ag=g(t) —g(to) »0asAt =t -ty -0

If g is continuous at every point of its domain of definition, it is simply
called continuous.
g is called differentiable at the point t = ¢y if at that point

. Ag(t)
Ag~ CAt — =C,
grOBtor fmar =4
this constant C is denoted by g’(to). If g is differentiable at every point of its
domain, it is called differentiable.
An important application of the derivative is a theorem on finite incre-
ments.
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Theorem 1.1 (Mean Value Theorem) If f is continuous on [a,b] and has
a derivative on (a,b), then there is ¢, a < ¢ < b, such that

f(®) — f(a) = f'(c)(b—a). (1.1)

Clearly, differentiability implies continuity, but not the other way around,
as continuity states that the increment Ag converges to zero together with
At — 0, whereas differentiability states that this convergence is at the same
rate or faster.

Example 1.1: The function g(t) = v/ is not differentiable at 0, as at this point

Ag _VAt_ 1
At~ At T /At

ast — 0.

It is surprisingly difficult to construct an example of a continuous function
which is not differentiable at any point.

Example 1.2: Example of a continuous but not differentiable at any point function.

o sin(3"z)
f(z) = Z — (1.2)
n=0
We don’t give a proof of these properties, justification for continuity is given by the
fact that if a sequence of continuous functions converges uniformly, then the limit is
continuous; and a justification for non differentiability can be provided in some sense
by differentiating term by term, which results in a divergent series.

To save repetition the following notations are used: a continuous function f
is said to be a C function; a differentiable function f with continuous derivative
is said to be a C! function; a twice differentiable function f with continuous
second derivative is said to be a C2? function; etc.

The same information is conveyed more formally by using classes of func-
tions. C™ denotes the class of functions which are m times differentiable with
continuous m-th derivative. Thus f € C? means that the second derivative f”
exists and is continuous.

1.2 Right and Left-Continuous Functions

We can rephrase the definition of a continuous function: a function g is called
continuous at the point ¢t = ¢y if

Jlim g(t) = g(to)- (1.3)
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In this definition it is not important how ¢ approaches tp, the limit is the same.

A function g is called right-continuous at ¢y if the values of the function
approach g{to) when t approaches tp from the right, that is, staying larger
than to, t > 2o,

lim g(2) = g(to)- (1.4)

tito
A function g is called left-continuous at tg if the values of the function
approach g(to) when t approaches ¢y from the left, that is, staying smaller
than o, t < tg,

lim g9(t) = g(to)- (1.5)

If g is continuous, it is, clearly both right and left-continuous. As an
exercise draw a graph of a right-continuous and a left-continuous functions.

The left-continuous version of g is g(t—), which is the limit of values of g(t)
when s 1 ¢, that is, s <t and s — ¢,

9(t-) =limg(s). (1.6)

From the definitions we have: g is left-continuous if g(t) = g(t-).
The concept of g(t+) is defined similarly,

gU+)=EEgG) (1.7)

If g is a right-continuous function then g(t+) = g(t) for any t, so that g, = g.

Definition 1.2 A point t is called a discontinuity of the first kind or a jump
point if both limits g(t+) and g(t—) exist. The jump att is defined as Ag(t) =
g(t+) — g(t—). Any other discontinuity is said to be of the second kind.

An important result is that a function can have at most countably many
jump discontinuities, see for example Hobson (1921), p.286.

Theorem 1.3 A function defined on an interval [a,b] can have no more than
countably many jumps.

Proor: For an arbitrary h > 0 consider the set S}, of all the points at which
the size of the jump of g, |Ag(t)] = |g(t+) —g(t—)| > h. If this set is not finite,
then it has an accumulation point. It is easy to see that this point is not a
discontinuity of the first kind. Therefore S; does not contain its accumulation
points (all points are isolated). Therefore this set is countable. The total
number of jumps is the union over n of the jumps of size greater or equal 1/n,
which is countable.

a
Note that a function can have more than countably many discontinuities, but
then they are not all jumps. Another useful observation is that a derivative -
cannot have jump discontinuities at all.
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Theorem 1.4 If f is differentiable with a finite derivative f'(t) in an interval,
then at all points f'(t) is either continuous or has a dzscontmmty of the second
kind.

Proor: Iftissuch that f'(t+) = lim,; f'(8) exists (finite or infinite), then
(by the Mean Value Theorem) the same value is taken by the derivative from
the right limag|o [Qj%t){:L(Q. Similarly for the left side of t. Hence f’(t) is
continuous at t. The result follows.

O

Functions considered in stochastic calculus

We make clear as to what kind of functions stochastic calculus deals with.
Functions considered in stochastic calculus are functions without discontinu-
ities of the second kind.

Thus the class of functions under consideration are functions that have
both right and left limits at any point of the domain and have one-sided limits
at the boundary. These functions are called reguler functions. It is often
agreed to identify functions if they have the same right and left limits at any
point. In particular one can take the right-continuous version of the function
or a left-continuous one. :

The class D = D[0,T) of right-continuous functions on [0,7], with left
limits has a special name cddldg functions, (which is the abbreviation of “right
continuous with left limits” in French). Sometimes these processes are called
R.R.C. for regular right continuous. Notice that this class of processes includes
C, the class of continuous functions.

Let g € D be a cadlag function, then by definition, g(t+) = g(t) and g(t-)
exist at any point. Therefore all the discontinuities of g are jumps. Introduce
the function of jumps Ag, defined by Ag(t) = g(t) — g(t—). The above result
on the number of discontinuities of a cadlag function is used in the following
form in stochastic calculus.

Corollary 1.4.1 Let g be a regular function which is left-continuous with right
limits (caglad), or right-continuous with left limits (cadlag). Then g is con-
tinuous at all points but jumps. The set of ]umps, {t : |1Ag(t)| > 0} is at most
countable.

Example 1.3: g(t) = 0fort < 0, g(0) = 1, and g(t) =2 for t > 0 is a regular
function but not caglad nor cadlag.

Remark 1.1: In stochastic calculus Ag(t) usually stands for the size of the
jump at t. In standard calculus Ag(t) usually stands for the increment of g
over [t,t + A], Ag(t) = g(t + A) — g(t). The meaning of Ag(t) will be clear
from the context.
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1.3 Variation of a Function

If g-is a function of real variable, its variation over the interval [a, b] is defined
as

Vy(la,8]) = sup Y |g(£7) — g(¢-)l, . (18)

i=1

where supremum is taken over partitions:
a=ty <t} <...<tp =b. (1.9)

Clearly, (by the triangle inequality) the sums in (1.8) increase as new points
are added to the partitions. Therefore variation of g is

Vo(la,b]) = Jlim 3" lo(e?) - g(¢20)l, (1.10)
T =1

where 8, = maxjcicn(ti — ti—1). If Vy([a,d]) is finite then g is said to be
a function of finite variation on [a,b]. If g is a function of ¢ > 0, then the
variation function of g as a function of ¢ is defined by

Vo (t) = Vg([0, 2]).
Clearly, V,(t) is a nondecreasing function of ¢.

Definition 1.5 g is of finite variation if Vy(t) < oo for allt. g is of bounded
variation if sup, Vy(t) < oo, in other words, if for allt, V,(t) < C, a constant
independent of t.

Example 1.4:

1. If g(t) is increasing then for any i, g(t;) > g(ti—1) resulting in a telescoping
sum, where all the terms excluding the first and the last cancel out, leaving

Vo(t) = g(t) — 9(0).
2. If g(t) is decreasing then, similarly,
Vu(t) = 9(0) — g(2).
Example 1.5: If g(t) is differentiable with continuous derivative g'(t), g(t) =

f; g'(s)ds, and f‘: {9'(s)|ds < oo, then

Vy(t) = / 19'(s)]ds.
[+]
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This can be seen by using the definition and the mean value theorem. j:"_l g'(s)ds =
9’ (&)(t: — ti-1), for a & € (ti-1,t:). Thus |f:_l g'(s)ds| = lg'(&)|(t: — ti-1), and

Vo) = lim 3 lo(t) — o)l =tm H1 [ o)l

i=1 i=1 Yt

n t
= s}l — i) = [ (ol
=1 0
The last equality is due to the last sum being a Riemann sum for the final integral.

Alternatively, the result can be seen from the decomposition of the derivative
into the pasitive and negative parts,

t t t
o) = [ s~ [Werra- [
() o 0
Notice that [g'(s)]™ is zero when [¢'(s)]* is positive, and the other way around.
Using this it is not hard to see that the total variation of g is given by the sum of

the variation of the above integrals. But these integrals are monotone functions with
the value zero at zero. Hence

Vo(t) / lo'(s)]*ds + / 19'(s)]"ds

]

]

/ (1" ()]* + [g'(s)] " )ds = / \g'(s)ds.
1] [+]

Example 1.6: (Variation of a pure jump function).
1f g is a regular right-continuous (cadlag) function or regular left-continuous (caglad),
and changes only by jumps,

at)= ) Agls),
0<as<t
then it is easy to see from the definition that
Vi) = 1Ag(s)l.

0<a<t

The following theorem gives necessary and sufficient conditions for a func-
tion to have finite variation.

Theorem 1.6 (Jordan Decomposition) Any function g(t) : [0,00) - R
of finite variation can be ezpressed as the difference of two increasing functions

9(t) = a(t) — b(2).

If g is right-continuous then it can be expressed as the difference of two right-
continuous tncreasing functions.
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One such decomposition is given by

a(t) = V(t) b(t) = Vy(t) — g(t). (1.11)

The representation of a function of finite variation as difference of two right-
continuous increasing functions is not unique. Another decomposition is

9(t) = 5 (%) + 9(6)) = 5 (Va(®) - g2)

The sum, the difference and the product of functions of finite variation are also
functions of finite variation. This is also true for the ratio of two functions
of finite variation provided the modulus of the denominator is larger than a
positive constant.

The following result follows by Theorem 1.3, and its proof is easy.

Theorem 1.7 A finite variation function can have no more than countably
many discontinuities. Moreover, all discontinuities are jumps.

PROOF: A monotone function has left and right limits at any point, therefore
any discontinuity is a jump. It can have only finitely many jumps of a fixed
size on [a,b], the number of jumps of size greater or equal to 1 is no more
than (g(b) — g(a))n. This implies that the total number of jumps is at most
countable. Since a function of finite variation is a difference of two monotone
functions, the result follows.
a
A sufficient condition for a continuous function to be of finite variation is

Theorem 1.8 If g is continuous, g’ exists and [ |g'(t)|dt < oo then g is of
finite variation.

A partial converse also holds. See, for example, Saks (1964), Freedman (1983)
p-209, for the following results.

Theorem 1.9 (Lebésgue) A finite variation function g on [a,b] is almost
everywhere differentiable on [a, b].
Continucus and Discrete Parts of a Function

Let g(t), t > 0, be a right-continuous increasing function. Then it can have
at most countably many jumps, moreover the sum of the jumps is finite over
finite time intervals. Define the discontinuous part g% of g by

1) = Y (s(s) —9(s-) = 3_ Agls), (1.12)

<t O<s<t



