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FOREWORD BY EDWARD TELLER

Is physics completed? At the time when the behavior of atoms was
finally understood this seemed to be a very real question. . .

A few problems remained. These included the relations between elemen-
tary particles and the unification -of gravitation, electromagnetism and
nuclear physics. About the latter not much was known and its importance
was underestimated. ‘

Today particles appear less elementary and unification looks more
ambitious than ever.

This book on the equation of state gives impressive evidence that a great
chapter of science including most of physics, chemistry and a great portion
of astronomy is, indeed, completed and unified. Just one idea had to be
added to the systematic knowledge of the elementary building blocks. That
idea developed into the theory of probability and statistical physics.

The structure of statistical mechanics is deceptively simple. The main
point appears to be to separate a bigger system into components whose
energies can be added while their probabilities can be multiplied. From this
statement it follows that probability depends on energy in an exponential
manner. Classical equation of state theories in all of their approaches
depend on this- one circumstance. The quantities and ideas used in the
comprehensive description of the development of two centuries are

.remarkably homogeneous, even uniform.

Yet, the theory of the equation of state spans an enormous range.
Obviously, huge numbers are involved. More importantly, the methods of
thinking are quite diverse. On the one end we have reversible processes. On
the other irreversibility is the main rule. The distinction between causality
and probabilistic arguments is even more basic. Einstein never was
reconciled to ‘laws’ of probability from which there was no appeal to the
supreme court of causality. =



X Foreword

A discussion of the equation of state gives an impressive demonstration
of how great a fraction of the inorganic world is explained by the revolution
called quantum mechanics. At the same time the equation of state presents
. the tools by which our experimental knowledge can be extended into
regions of extreme concentrations of energy and matter.

All this leads up to a part of physics which may move faster and farther
than any other branch: astrophysics. Neutron stars and black holes are
realistic examples of the two frontiers of physics: nuclear forces and general
relativity. The authors use the same mathematics, the same concepts to
introduce problems of astrophysics as they have used to explam the
common properties of matter.

The first man whose ideas about atoms are still remembered is a
philosopher from Thessaly: Democritos. Almost two and a half millennia
ago he suggested that matter may not be divisible without limitations. A
serious revival of his idea started around 1800. Since that time science has
been accelerating. It still produces unexpected facts and the completion of
physics is not in sight. My preconceived idea is that science is opeén-ended.
In this book the reader will find an exciting review of the rich past and he
also will get a glimpse into a future which may be unlimited.



PREFACE

~ =

The equation of state is the relation between the pressure, the
temperature and the density (specific volume) of a physical system and is
related both-to fundamental physics and to applications in astrophysics,
gases and condensed matter, and nuclear and elementary particle theory.

In the same way that I}I_qutbnian mechanics can be regarded as the
foundation of physics, so the equation of state of ideal gases can be
considered to be the foundation of thermodynamics, hydrodynamics and
chemistry. Furthermore, as mechanics was extended to take account of
relativity and-quantization, so the equation of state had to be developed to
describe states of matter in extreme density and temperature domains.

The main aim of this book is to provide the reader with a basic
understanding of the development of the equation of state. It should be of
value to undergraduate and graduate students with an interest in astro-
physics, solid state matter under extreme conditions, plasma physics and
shock waves, as well as special aspects of nuclear and elementary particle
physics. :

- The systematic derivation of essential physical theory includes several
original expressions. The elements of classical statistics and the Bose-
Einstein and Fermi-Dirac equations of state (EOS) are based on partition
functions and the Thomas-Fermi model derivation includes the exchange
interactions which lead to the Thomas-Fermi—Dirac equation. Special
attention is given to the virial theorem. A new ‘treatment of the Griineisen
EOS, based on Einstein’s and Debye’s models of solids, is given which
highlights Einstein’s ingenious contributions. Fluid mechanics and the
kinetic theory are derived with particular emphasis on shock waves and a
_special meaning is given to the relation between the equation of state,
Griineisen coefficients, cold pressure and high pressure shock waves in
solids.



xii Preface
\

The book also describes several important applicz{tions of the equation of
state together with accaunts of the most recent research results including
original new presentations. The study of inertial confinement fusion,
especially laser fusion or-particle beam fusion, is one of the fields in which
pressures of nearly 10 gigaatmospheres and temperatures of about 100
million degrees are being achieved. These extreme conditions are described
in a detailed and novel manner. The application of the equation of state to
the extreme conditions of astrophysics is dealt with, special attention being
given to the stability of normal stars based on radiation pressure and
particle pressure. The equation of state in nuclear mattes is described using
the Hagedorn theory; this subject can either be related to the theory of
strong interaction or to the model of the early universe.

This book is only a stroll through the equations of state in science and -
many more applications can be considered. In particular the physics of
phase transitions could be the basis for a complementary volume on the
equations of state. We believe that the book emphasizes the importance of
equations of state in science and that further academic study and research is
required to bring this subject to the attention of science students.

We would like to thank our secretaries, Mrs Marie Wesson and Ms
Noemi Francisco of the University of New South Wales, for their precise
and neat work. Our tharks are also extended to Mrs Catherine Faust
(UNSW) for her immaculate preparation of the artwork.

Finally, the authors wish to acknowledge the support of the Gordon-
Godfrey bequest, the Australian Research Grant Scheme and the Aus-
tralian Academy of Sciences which was essential for the- preparation of
this book. These grants enabled the authors to meet in the australian
summer of 1983 at the University of New South Wales in Sydney, where
they began their collaboration on the book.

March, 1986 Shalom Eliezer
/Ajoy Ghatak
Heinrich Hora
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1

Introduction

1.1 General remarks :

Important branches of physics were developed or originated from
the equation of state while (in return) more and more complex formulations
of the equations of state were due to the developments of modern physics.
The ideal gas law was the first quantitative treatment of chemical kinetics
and the beginning of thermodynamics and statistics, resulting in the first
complete formulation of the laws of energy conservation and entropy.
From the thermodynamics of entropy of radiation, Max Planck discovered
the atomistic structure of action (quantization), one of the basic properties
of nature. The properties of molecular interaction were described quantita-
tively for the first time by van der Waal’s equation of state.

Nowadays, physics has developed towards research of such extreme
conditions of matter, as shock waves in metals at several million
atmospheres pressure and strong non-equilibrium states in chemical reac-
tions using laser or plasma technology, while laser produced plasmas now
provide matter at pressures of up to a thousand million atmospheres in
the laboratory. In astrophysics, we observe objects at much more extreme
conditions with pressures and temperatures of many orders of magnitudes
beyond the extreme points reached in the laboratory. These astrophysical
objects, previously topics of speculation only, are now very serious research
fields producing detailed knowledge following the breathtaking develop-
ment of space technology. The conditions of neutron stars and beyond
involve nuclear matter such that the study of the equations of state could
become a new route for solving fundamental problems in the ghysics of
elementary particles and nuclei where the combined effort involves the
physics of condensed matter and of ordinary high density plasmas.

While the study of equations of state was one of the most important
problems in physics in the first of the nineteenth centurt, there is again



2 Introduction

now a high priority in modern physics to solve the numerous deficiencies in
our knowledge of equations of state. The development of equations of state
is again sought to meet the needs of the rapidly advancmg modern physics
of extreme states of matter.

Recognizing the lack of knowledge of the equations of state in modern
physics, an introductory summary of knowledge of the development of the
equations of state will be presented in the following chapters together with a
presentation of the derivations and typical results, with the aim of giving an
improved, generalized and shorter presentation of this developing field.
Together with these basic concepts, numerous important and exciting
applications, in the physics of high pressure in solids, metals and plasmas,
for dense nuclear fusion, astrophysics and for nuclear and high energy
physics, are given.

1.2 Phenomena at various densities and temperatures
The states of all substances are relatively simply described if the
density is very low and the temperature is not too close to 0 K. In this case,

Fig. 1.1. Rar;ges of density. and temperature for which equations of
state are to be considered.
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' 1.2. Ranges of densities and temperatures 3

the ideal equation of state for pressure P in a volume V is determined by the
temperature T

PV =RT ' \ (1.1)

where the constant R depends on the number of moles in the volume V and
the degree of freedom of the molecules. Expressing V as 1/n, the density of n
atoms of dissociated molecules (or ions) in the gas, eqn. (1.1) reads

P=nkT ' (1.2)

where k = 1.38 x 10” Sergdeg ™! is Boltzmann’s constant.

Fig. 1.1 is a diagram of density and temperature of matter which permits
a classification of different states without the pressure — and subsequently
the equation of state, being given. The density—temperature diagram of
matter in this section is therefore a first classification of the problems
discussed in the book. The next step will be to explain the Fermi-pressure in
Section 1.3, and Section 1.4 will then provide an overview in terms of a
preliminary pressure—temperature diagram for the range of states and their
limitations to be treated and extended in the subsequent main sections of
the book.

In Fig. 1.1, the range of the ideal equation of state is that of nonionized
matter at low densities. At higher densities, range 1 covers condensed
matter and range 2 may cover the conditions that ions are fixed in space
(crystals), limiting their motion to defined centres of oscillation only (Brush
. 1967).

Range 3 has no sharp limits of high density and temperature and
represents mainly a gaseous state with partial ionization. This state is
determined by the Saha equation for describing the degree of dissociation
by Boltzmann factors (first studied by Schottky (1920)) and covers strong
coupling between electrons and ions (Hansen 1973; Golden 1983; Pines and
Noziéres 1966) including the metallic state in the upper part of range 1.
Because of the high density and low temperature, the electrostatic plasma
effects not only decrease the ionization energy but cause the merging of
spectral lines into the vacuum levels or the ‘drowning of spectral lines’
(Inglis and Teller 1939; Traving 1959) (which as well as the polarization shift
(Griem 1981) can be explained in a straightforward way by an electrostatic
atom model (Hora 1981, p. 28; Henry and Hora 1983; Henry 1983)). The
whole physics of range 3 is not yet extensively developed, neither are the
highly complicated equations of state in this range.

At higher temperatures and low densities when there is a high dcgree of
ionization of atoms or the state of fully ionized plasma is reached — range
4 — the resulting plasma is gaseous and kinetically rather simple: a classical

N



4 Introduction

ionized gas governed by the ideal equation of state. This state, however, has
non-classical properties: ‘the classical Coulomb collisions change into
quantum collisions at a temperature T*

kT* =4Z*myc*a? (1.3)

as detected in plasmas as anomalous resistivity which can be explained
quantitatively by this process (Hora 1981, p. 37; Hora 1981a). In (1.3), Z is
the number of charges (degree of ionization) of the plasma ions, m, is the
electron rest mass, c is the speed of light, and the fine structure constant is
a = e?/hc where eis the electron charge and # = h/2x: h is Planck’s constant.
Further, in range 4, thermonuclear reactions at temperatures around and
above 10* eV will begin. Another example of non-classical behaviour is that
at thermal equilibrium with equilibrium (opaque) black body radiation in
the plasma, a strong coupling between electrons and black body radiation
will occur, which we discuss in Section (1.5). Above a temperature
mc? =0.52MeV, pair production and other inelastic interactions will
occur. Nevertheless, the equation of state may well be the ideal one and of a
simple nature.

The range 4 is limited towards higher densities by the curve A in Fig. 1.1
where the quantum effect of degeneracy of electrons will occur. The
particles will then have a quantum energy E, which is higher than' the
thermal energy. This quantum energy E,=p?/2m corresponding to a
momentum p is determined by the length x = 1/n'/3 of the eube into which
the electron with its density n is packed, which has to obey-quantization

xp=h (1.4)
resulting in

h2 2/3
E,=—n?% 1.5
- 2m o (=)
Taking into account that each of these volumes can be occupied by two
electrons due to the spin and including the correct geometric factors for the
spherical atoms, the quantum energy E_ is given by the Fermi energy with
the electron density n given in cm ™3

K an@m

2m, 4
=582 x 10”7 2"n?3erg = 3.652 x 10~ 5?3V

(1.6)

It is worth noting that this quantum energy is not only related to particles
with a spin of 4 (Fermions) following the Fermi-Dirac statistics- (Dirac



1.2. Ranges of densities and temperatures 5

1926; Fermi, 1928) but it is a basic quantum energy as described before.
Only the density of states can be larger than that of the electrons. It is
therefore of interest to note curve B for protons in Fig. 1.1, above which
density the quantum energy is higher than the temperature.

The relativistic extension of these limits by using the particle velocity v
and the electron rest mass my, for the energy E = moc2[(p?/my2c?) + 1112
where p =mqv/(1 — v?/c?)"/2, one arrives at the relativistically generalized
Fermi energy

& =(3/7‘)2/3in2/3 1
T4 2mg (A2 + 1/(A/2°]P

where the Compton wave length of the electron A, = h/m,c was used. Above
the density n. = 4.~ 3, the Fermi energy of the electrons is relativistic
2/3

ce = hentP O 1> 4 -3 | (18)
and does not depend on the particle mass. For lower densities, (1.7) reduces
to (1.6). The quantum (Fermi) energies for protons and electrons merge into
the same lines in Fig. 1.1 at high energies, where the relativistic particles
cannot be distinguished by their mass. The same phenomenon is known
from charges oscillating in a laser field or black body radiation: if the
oscillation energy becomes relativistic, the particles have the same energy
and cannot be distinguished by their mass (Hora 1981). For temperatures
above myc? and at degenerate densities (Range 5), the electrons cannot
follow Fermi-Dirac statistics as will be shown in the Section 1.5 because
of strong coupling to the black body radiation.

The remaining part of Fig. 1.1 for temperatures below moc? and above
curve A of degeneracy, is characterized by the limit of relativistic Fermi
energy n. = (1/A.)*, by the range where nuclear reactions are starting — even
for low temperatures — which is for example related to picnonuclear
reactions (Harrison 1964) as seen also from an increase of fusion cross-
sections at high temperatures (Ichimaru 1984; Niu 1981). We refer also to
Brush (1967) concerning these low temperature high density nuclear
reactions.

At densities above 10**cm™3, the reaction between protons p and
electrons e to produce neutrons n and neutrinos v

(1.7)

€

p+e=n+v (19)

will start. The line of relativistic ‘Fermi energy’ of baryons (protons or
neutrons) is therefore heuristic only. The cold fusion of protons to neutrons
at these densities of 103% cm ™3 is easily understood from the fact that each



