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Preface to
Fourth Edition

It has been twenty-four years since the first edition of Michael Bren-
nan’s Preface to Econometrics and thirteen years since the third edition. In
that time there has been considerable advancement in the techniques and
technology of econometrics. Professor Brennan’s book has continued to be
a mainstay in the instruction of quantitative economics and econometrics
because he addresses himself directly to the student, communicating clearly
the concepts of quantitative economics and econometrics.

In collaborating with Professor Brennan on a fourth edition of his
text, I have tried to remain true to those qualities that made earlier editions
of this text classics. Where there have been changes, the goal has been to
enhance the original Brennan concept. First, we have changed the name to
more clearly reflect the content of the text. Unlike many texts that divorce
the principles of mathematical economics from those of econometrics, we
have emphasized that both quantitative economics and econometrics are
critical to economic research. Second, we have blended the economic ex-
amples more directly into the text, showing in every chapter real-world
applications of the mathematical and statistical concepts. Third, we have
extended the discussions of matrix algebra (Chapter 5) and statistical estima-
tion (Part III) to incorporate major advancements in computer software. No
longer do we treat matrix inversion and multiple regression as the tedious
processes they were even a decade ago.
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iv Preface to Fourth Edition

I wish to thank Michael Brennan for the confidence he showed by
agreeing to this collaboration. Second, I would like to thank my former col-
leagues at Memphis State University, particularly Professor Karen Pickerill,
for constructive comments over a period of eighteen months. Finally, I thank
my undergraduate and graduate students at Memphis State, who read and
criticized early drafts of this text as the book was classroom tested.

Thomas M. Carroll
University of Nevada, Las Vegas



Introduction

This text addresses two topics: quantitative economics and economet-
rics. Quantitative economics deals with the use of mathematical concepts and
techniques in the analysis of economic phenomena. Econometrics involves the
use of statistical methods to estimate the equations that describe economic
events. Quantitative economics and econometrics are two closely related, but
distinct aspects of economic science. They are related in the sense that the
econometrician uses mathematical methods to generate economic models to
be subjected to empirical testing. Furthermore, the procedures of econo-
metrics provide estimates of the unknowns in mathematical models. It would
not be exaggerating to say that mathematical economics is the foundation
of econometrics, and that econometrics adds realism to abstract mathematical
models. Hence, it is natural for a text to treat both quantitative economics
and econometrics. But it is also reasonable to address these topics separately.

Despite the intimate relation between mathematical economics and
econometrics, they both lead lives of their own. Many theoretical economics
texts and articles are written in general mathematical terms without concern
for the precise values of economic variables. Mathematics, by itself, lends
precision to economic concepts that are more difficult to grasp with non-
mathematical language. For instance, a mathematical economist may use a
particular symbol to stand for the price and another to stand for the mar-
ginal cost of production. The principles of calculus can be employed to
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viii Introduction

show that profit maximization by a competitive firm requires that marginal
cost equal price.

While mathematical economics can stand without econometrics, it is
less clear that econometrics can be used or understood without a basic
understanding of mathematical concepts. It is true that modern electronic
computers have taken much of the drudgery out of mathematical computa-
tion. But computers, even loaded with sophisticated econometric software,
only do what they are told. We must have a pretty good idea of what we
want the computer to do, or we will have a difficult time interpreting the
computer output. That is why this book devotes half of its contents to
mathematical economics. Chapters 1 through 11 develop the major mathe-
matical tools necessary for understanding econometrics. These chapters can
stand alone in a course in quantitative or mathematical economics, or they
can serve as background in a course in econometrics.

Econometrics might simply be defined as a bridge between economic
theory and reality. Obviously some elaboration is in order. Life is rich in
experience, vast in complexity, and intimidating in importance. Theory is
simple, precise, and elegant. Theory cuts away irrelevant detail and organizes
what remains into a model of an ideal system. Some people are put off by
the lack of realism of theory; they fail to appreciate that it is precisely its
abstraction that gives theory its ability to predict. Ironically, some theorists
lose patience with the sloppiness of the real world; they fail to appreciate
the fact that the ultimate test of a theory is its ability to predict and/or explain
actual events.

The problem of testing theory—any theory—rests in reconciling ob-
served events and theoretical explanations. In the physical sciences, theories
are tested in controlled experiments. The chemist or the physicist literally
creates an imaginary world in the laboratory so that ‘“‘causes’’ and ‘“‘effects’’
can be clearly isolated and identified. In the behavioral sciences the researcher
contrasts an experimental group with a control group. Since factors influenc-
ing human (and even animal) behavior are too complex to control directly, re-
searchers rely on the rules of probability to isolate the influence of a stipulated
stimulus (e.g., stress) on the subject population. In economics, we use pub-
lished data on past events to estimate the mathematical structure of theories,
comparing the statistical relationship between ‘‘causes’’ and ‘‘effects’’ with
those predicted by theory. The greater the probability that the observations
could have been generated by chance, the less credence is given to the theory.

Econometrics essentially follows a four-step process, commonly known
as the scientific method: (1) the assembly of facts and similar information,
(2) the formation of a hypothesis or hypotheses about the behavior of eco-
nomic variables or the causes of events, (3) the derivation of testable asser-
tions or predictions that are logically derived from the hypotheses, and
(4) the testing of predictions by the reference to observed facts, We might
refer to step (1) as experience, step (2) as theorizing, step (3) as mathematical
reasoning and step (4) as statistical inference.
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Each step can be self-contained, practiced and studied in isolation
from the others. Many practitioners of the business arts are sometimes
bored by theory, terrified of mathematics, and confused by statistics. Yet
it is amazing how frequently they rely on ‘‘rules of thumb”’ that are little
else but ad hoc theories. They also survive by ‘‘seat of the pants’’ calcula-
tions and playing their hunches. When we think about it, most business-
persons are actually amateur econometricians!

Similarly, the economics profession, and indeed the world, is full of
““pure’’ theorists, thinkers who so admire the elegance of a theoretical sys-
tem that they disdain the real world, or perhaps more dangerously, mistake
the real world for their ideal type. Having a nearly religious commitment
to the principles of their theories, they see no need to test their beliefs. If
“‘the real world”’ fails to conform to the predictions of their theories, so
much the worse for the real world! Alas, when reality is seen as the servant
of theory, rather than the other way around, hostile camps of conflicting
theories coalesce around conflicting interest groups. The reputations and
careers that are destroyed in the name of preserving the purity of theory are
legion. If different theoretical propositions are but put to the test, much of
the disagreement could be resolved.

Mathematics is a language that facilitates the communication of eco-
nomic concepts. Most economic concepts are quantitative; prices, income,
saving, amounts of commodities produced and consumed, and many other
economic magnitudes are, at least in principle, measurable. The use of
mathematical symbols is perfectly natural in economics. There is no funda-
mental difference between mathematical economic theory and economic
theory that does not use mathematics. Although the same conclusions can
be reached whether the theory is stated verbally or mathematically, there
are definite advantages to mathematical formulation: (1) it introduces rigor
into the definitions and relationships, (2) it makes the assumptions explicit
at each stage of the reasoning process and thereby avoids hidden assump-
tions not easily discovered, (3) it brings out clearly the limitations of the
theory, and (4) it identifies implications that might be overlooked in purely
verbal presentations.

Econometrics differs somewhat from mathematical economics, how-
ever. It differs in that its mathematical formulations are designed with a
view to statistical measurement and testing. Statistics is also an important
aspect of econometrics, yet we must distinguish econometrics from what we
may call statistical economics. The latter is a form of quantitative economics
that avoids economic theory and claims to provide a statistical summary
of the economic data themselves. The recording and charting of the gross
national product of the total United States is an example of statistical eco-
nomics. Another example is the tabulation of the consumer price index. But
the mere accumulation and ordering of data seldom provide solutions to
important economic questions. Some theory is required to interpret the be-
havior of items in the data; explanations do not come ready-made. Since
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some theory is unavoidable, it is usually best to state the theory explicitly.
Econometrics, unlike statistical economics, synthesizes theoretical ideas,
mathematical form, and quantitative evidence.

Econometrics, when it is done well, blends the elements of experience,
theory, mathematics, and statistical inference to provide a unified picture
of economics. A practicing econometrician is a generalist, a practical theorist
with a working understanding of both mathematics and statistics. This book
is designed to be the first step in the training of an econometrician. No
doubt you already possess, in varying degrees, the various talents and apti-
tudes necessary to master the subject matter of this text. You certainly have
had some experiences. You have also taken previous courses in mathematics,
statistics, and economics. Yet if your experience is like that of most students
(including that of the authors of this book), these four facets of econometrics
have been learned in isolation from each other. So this book is designed to
put the pieces together.

Part I covers the essentials of mathematical economics, with the goal
of understanding how to translate verbal economic arguments into their
mathematical equivalents. Many economic examples are used to develop
these topics. You may discover that your knowledge of economics will help
you understand mathematical concepts that heretofore seemed like so many
abstractions. Alternatively your deepening understanding of mathematics
will reveal insights into economics you previously missed with a ‘‘verbal”’
orientation to the subject.

Part II presents a transition from quantitative economics to economet-
rics, reviewing how risk and uncertainty play a crucial role in the estimation
of economic models. Part III deals with the problem of statistical inference
as it relates to the testing of economic theories. These chapters are rich in
economic applications, including many tests of controversial theories. It is
likely that you will not agree with all the conclusions we make. But that is
the point of econometrics. Disagreements should be resolved by recourse
to the data. Accordingly, the data for most of the examples in the text are
provided on a microcomputer disk that accompanies your professor’s in-
structor’s manual. You should find that by retracing our steps, and trying
a few twists of your own, many disagreements can be resolved.

Many students find that the easiest way through a course is to psyche
out the professor, memorize the relevant concepts, and forget the material
after the final exam. But that is not the best approach to econometrics.
Econometrics is ‘‘hands-on’’ economics, designed to subject our most closely
held convictions to objective tests. Econometrics must be understood in order
to be applied, and it must be applied in order to be understood. This book
is a preface to econometrics, a first step to understanding the interaction
between economic theory and the real world.
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1
Variables and

Functions

As shown in the preceding introductory sketch of econometrics, there
are two aspects to the empirical science of economics: (1) theoretical explana-
tions of events in the economy are phrased in terms of mathematics; and
(2) the mathematical equations that describe economic behavior are subjected
to statistical analysis. In the early chapters we will focus on the former as-
pect. We shall see how familiar notions of economic theory can be phrased
in mathematical terms. Mathematics is a language for the expression of theo-
retical propositions. For the most part, vou will already be familiar with the
economic ideas we will use to introduce some elementary mathematical terms.
We shall see how these terms, once understood, provide deeper insights into
economic concepts by adding both rigor and clarity.

VARIABLES

Before we can formulate economic theory in mathematical terms, it
is necessary to understand the mathematical elements that make up that for-
mulation. The most basic of these is the variable. A variable may be defined
as a quantity that can assume any value from a given set of numbers. A vari-
able is usually symbolized by a letter, such as x, y, or z, or a terse group
of letters used to describe its meaning (e.g., CON for consumption, MC for
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2 Part I Mathematical Analysis

marginal cost, or MR for marginal revenue). Suppose that the variable under
consideration is called x and that x can take on any positive value from zero
to one million. We represent the potential values of x as a set, called the
domain of the variable. Individual values of the domain, such as the numbers
0, 0.5, 1, 2, 15.125, 27, and 1,000, are each elements of that set. We show
that 2 is an element of the set of numbers between zero and one million in
the following way: 2 € {0 < x < 1,000,000}, where “‘¢’’ (the Greek letter
“‘epsilon’’) means ‘‘is an element of.”

The domain of a variable may be either finite or infinite. A finite set
has a specified number of elements; the number of elements can be counted.
The set of integers between 0 and 10 is a finite set; the entire set can be
enumerated: {1, 2, 3, 4, 5, 6, 7, 8, 9}. It follows that an infinite set cannot
be listed explicitly because the number of elements cannot be counted. The
set of positive integers is an infinite set. The entire set can only be listed by
stipulation of the rule for inclusion: {x is an integer and x > 0J.

You are no doubt familiar with a number of mathematical operations
that can be performed on variables. For instance, if we are concerned with
the set of positive integers, the operations addition, multiplication, and ex-
ponentiation performed between two or more elements in the set of posi-
tive integers generates a result (value for x) that is also an element of that
domain. In other words, the sum of two or more positive integers is also
a positive integer; the product of two or more positive integers is also a pos-
itive integer; and a positive integer raised to a power that is also a positive
integer produces an answer that is a positive integer. By contrast, the op-
erations subtraction and division, when performed between two or more
members of the set of positive integers, do not always yield results that are
positive integers. If we take two values of x, say x; and x,, such that both
are positive integers and x; > xj, then (x; — x)) e [positive integers] while
(x; — x5) £ (positive integers}. (The epsilon with a slash through it is read
“‘is not an element of.”’) If x; is a prime number, there is no positive inte-
ger, aside from x; itself and the number ‘‘1’> which, when divided into x;,
will yield another positive integer.

The set of real numbers is used frequently in economics. This set is
composed of all rational numbers (numbers that can be expressed as the ratio
of two integers) and the set of irrational numbers (which cannot be expressed
as the ratio of two integers). An attractive feature of the set of real numbers
is that the five common mathematical operations—addition, subtraction, mul-
tiplication, division, and exponentiation—are all defined over the domain
of real numbers. If we add any two real numbers, our result is a real num-
ber; if we multiply any two real numbers, our result is a real number. The
set of real numbers includes negative as well as positive integers. Hence, if
we subtract a larger integer from a smaller integer, our result is a negative
integer, which is, of course a real number. When one integer is divided by
another, the result is a rational number, although not necessarily an integer.
All rational numbers are included in the set of real numbers.
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Recall that an integer raised to an integral power generates an integer;
but an integer raised to a power that is not an integer will not normally pro-
duce an integer. A variable raised to an exponent that is a negative number
is equivalent to taking the reciprocal of that variable raised to the absolute
value of that power; e.g., x~2 = 1/(x2). A variable raised to a fractional
power yields a result that is equivalent to raising the variable to the power
indicated by the numerator of the fraction, then taking the root indicated
by the denominator of the fraction; e.g., x1/2 = Vx; x2/3 = Jx2.

It should be clear why economists and other scientists usually specify
the set of real numbers as the domain for the variables of their theories;
specification of a more restricted domain constricts the freedom of investi-
gators to employ mathematical operations on those variables. Nevertheless,
there are some instances when relevance dictates a limit to the set of values
a variable can assume. In this universe, mass and energy cannot assume
negative numbers. When economists speak of technology, their subject is
bound by the rules of known science. Therefore, we cannot speak of negative
outputs or negative inputs, although changes of inputs or outputs could be
positive, negative, or zero. By similar logic, it usually makes better sense to
constrain prices and costs to the set of positive real numbers.

FUNCTIONS

As you can see, many diverse phenomena can be treated as variables
in economics: rates of input and output; flows of income, cost, and revenue;
stocks of machinery and inventories. But not even the pure mathematician
is interested in variables for their own sake. The mathematician attempts ta
relate one or more variables to others. In economics the theorist tries to
determine the connection among relevant concepts (variables). A relation is
formally defined as a set of ordered pairs. This means that the relationship
between two variables, say x and y, defines a set of paired values, in which
the first element in each pair is a value for x, and the second element of that
pair is a corresponding value of y. We can let the letter R denote some rela-
tion between them. For instance, let R(x, y) stand for the relationship “‘y
is greater than x’’: R(x, ) = {(x, ¥) such that y > x}. The pair of numbers
(2, 4) belongs to the relation, whereas the pair (4, 2) does not.

A function is a special kind of relation with the property that each value
of the first element (drawn from a set called the domain) of the ordered pair
is associated with a unique value of the second element (drawn from a set
called the range). The relation defined in the previous paragraph is not a
function; we can find two pairs, say (2, 4) and (2, 5), which both satisfy the
relation. For a specified value of x, there is more than one admissible value
of y. By contrast, the relation y = x2 is a function; whatever real number
we specify as the value of x, there is only one value of y that is admissible;
namely, the result of x multiplied by itself. The variable y is said to be a
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function of x if, once the value of x has been specified, the value of y is
uniquely determined. The variable x, whose value may be arbitrarily assigned,
is called the independent variable. The variable y, whose numerical value
is stipulated by the selection of x, is called the dependent variable.

To this point we have defined functions as relations between only two
variables. These are the types of functions with which you are most familiar,
given the prevalence of two-dimensional diagrams in economics. However,
we will learn presently that a dependent variable can also be defined for com-
binations of two or more independent variables.

The standard notation for defining a functional relation between the
dependent variable y and the independent variable x is: ¥ = f(x) (although
nearly any letter or symbol could be used in place of *‘f*’). This notation
means that the value of y depends on the value of x in some unspecified
way.

To appreciate the usefulness of this mathematical symbolism, consider
an example from economics. Let p represent the price of a commodity and
g the quantity of that commodity that a household will buy, given values
for the prices of complements, substitutes, the household’s real income, and
the tastes of family members. The demand function can be written ¢ = D(p);
the quantity demanded is unique for each price, although the relation is as
yet unspecified. Estimation of the demand equation could yield explicit
mathematical functions, such as ¢ = 100 — 2p or ¢ = 20p~2, Likewise, the
consumption function might be written as C = C(Y,), where the dependent
variable is aggregate consumption and the independent variable is aggregate
disposable income. Statistical techniques could be employed to determine
a specific mathematical relation between the two variables. No doubt you
can think of many more examples from economics.

We can now discuss the specification of functional form in more detail.
As we will see in Part III, before we attempt an empirical estimation of a
function, it is necessary to specify a general mathematical form the equation
will take. An equation is a statement of equality between two mathematical
entities. It stipulates the value of one variable, once the value of the other
has been specified. The convention is to place the dependent variable on the
left side of the equal sign and the independent variable on the right side.
This notation is referred to as the explicit form of the function. The familiar
““intercept-slope’’ form of the linear equation, e.g., y = 6 + 3x, is an ex-
ample of the explicit form. This equation says that the value of y is deter-
mined by taking the value of x, multiplying it by 3, and adding 6. The value
of y is unique for each value of x because each time the value of x changes,
the value of y changes by three times that amount.

In contrast to the explicit form of an equation, the implicit form depicts
a mutual relation between variables. The function f(x, ¥} =3y — 9x — 18 = 0
is equivalent to the explicit function in the previous paragraph, i.e.,
Y = 6 + 3x. Note that by adding ‘‘9x + 18’ to (or subtracting ‘‘—9x — 18’
from) each side of the equation, then dividing through by 3, we obtain our
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implicit equation from the explicit one. Indeed, this is what we mean when
we say we have ‘‘solved’” an equation: we have translated an implicit func-
tional form into an explicit form. Note that we could have solved the im-
plicit form to make x a function of y: 3y — 9x — I8 = 0 becomes x =
(1/3)y — 2 by adding 9x to both sides of the equation, dividing through by 9,
and then transposing. An implicit linear equation has the property that either
variable can be assigned the role of dependent variable. This is not always
the case with nonlinear functions. The implicit function y — x2 — 9 =0
can be solved for y to yield the function y = x2 + 9, since each value for
x is associated with only one value of y. However, if we solved this equation
for x, we would generate the relation x = =+vy — 9, which is not a func-
tion. For instance, if we set y = 13, there are two values of x implied, namely
x=2and x = —2.

Let us return to our demand function example: ¢ = D(p), where p
is the price of the commodity and g is the quantity demanded. We might
write this demand function explicitly as:

(1) g=100—-2p
We could also write it implicitly as:
2 g+2p-100=0

By expressing the demand function explicitly as in (1), we not only
state that g depends on p, but go further dand state the exact way in which
g depends on p: g is determined by multiplying p by 2 and subtracting that
product from 100. For any value of p, g is uniquely determined. You have
probably already recognized equation (1) as a specific example of the “‘law
of demand.”’

However, if we solved the implicit equation for p, we would obtain
the function p = 50 — 0.5¢, which could represent the average revenue
function for an imperfectly competitive seller. As we will see in Part III, the
specification of which variable is independent and which is dependent has
a profound influence on the nature of the model being tested. Many con-
troversies in economics involve disagreements about the assignment of inde-
pendent and dependent variables. For example, in his classic article, A. W.
Phillips' hypothesized that wage changes are a function of the unemploy-
ment rate. In his attack on the ‘‘inflation-unemployment trade-off,’* Milton
Friedman?® disputed the argument that the unemployment rate is a function
of the rate of inflation (which presumably reflects money wage changes).
In the debate, the unemployment variable was transformed from the inde-
pendent variable to the dependent variable.

'A. W. Phillips, ‘“The Relation Between Unemployment and the Rate of Change of Money
Wage Rates in the United Kingdom, 1861-1957,”" Economica (November 1958), pp. 283-299,

*Milton Friedman, ““Nobel Lecture: Inflation and Unemployment,”’ Journal of Political
Economy, (June 1977), pp. 451-472.
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Functions of One Variable

The notation y = f(x) signifies no more than the proposition that we
are taking y as some explicit function of x. More specifically, it states that
Y is a function of one variable only, x. Both y and x enter the equation,
but there is only one independent variable. Hence, we say that this is a
function of one variable. There are several types of explicit functions of
one variable, and we shall discuss some types that are commonly used in
economics.

Linear Functions

A linear function is one in which only the first power of the indepen-
dent variable appears in the equation. The reason for the name *‘linear’’ will
become clear when we discuss graphs of functions. The equation for this
function is sometimes called a first-degree equation. The following equations
all represent linear functions:

1M y=x

2 y=2-x
3) y=4+ 3x
@4 y=a+ bx

Equation (4) is a general statement of a linear function. The letters a
and b refer to constants whose values are unspecified. This general form
would take on the configuration of (1) if ¢ = 0 and 4 = 1; it would take
form (2)ifa = 2 and b = —1; and so forth. Equation (4) is called the gen-
eral form of the equation because ¢ and b represent unknowns rather than
stipulated constants.

Polynomial Functions

When the single independent variable is raised to powers that are
nonnegative integers, we have a polynomial function. A linear function
is a polynomial function whose greatest exponent equals 1. A quadratic
function is a polynomial function wherein the independent variable is raised
to the second power. The following set of equations all represent quadratic
functions:

1 y=x?

2 y =10 + 3x2

(3) y=2—3x + 4x?
@4 y=a+ bx+ cx?

Equation (4) is the general quadratic form with &, b, and ¢ as unspecified
constants.

Higher powers of the independent variable may also be encountered in
a polynomial function. The cubic function includes at most the third power



