UML Y i m] %F % 3% i} 5% B 1B

TR eSS
W

THE ART OF OBJECTS

OBJECTS-ORIENTED DESIGN
AND ARCHITECTURE

YUN-TUNG LAU,PH.D. %i¥

JACOBS 0N

P HUMBHUGH
mpey 4 ok 2
é wz’vw smenceﬁpicoﬁ

UML 5 e st &% 5 A B

1% R R G R R i

Yun-Tung Lau, Ph.D. %%

M4 % % B p
ik

bl

& &

AR)0 BIF AR EE T B RGBT B, WS THARES . SR EGL. MR -5
th. MR A R SRR, FHEEO. W RRGEMEEEANE. RS T
KA Sepl, It T Rk DS R k.

AL A i e B R G BBt A A B
English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: The Art of Objects: Object-Oriented Design and Architecture,1* Edition by
Yun-Tung Lau, Copyright©2001

ISBN 0-201-71161-3

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
R Frp e NRALRIESE Y (AN G [E A 80 TR AT B A b [J SO #58R AT,

A A E} IS Pearson Education(357E # & Hh RUCEE) BOGE Dhbr%s . EARSE & ARt .

B 7: 01-2003-2539

EEERRSE (CIP) 803

I 1) X4 % R G484 K it =The Art of Objects:Object Oriented Designiand Architecture/ () J7{
(Laud,Y) #—SBEIA, —lbal: FlEthsct, 2003

ISBN 7-03-011400-0

L. IL97.. NLESXZES—RFRI—RC V.TP312

o R AR A P {56 CIP Bl b 7 (2003) 7 030825 &

RX i BRI/ TIERE: RRE
TAEEP K] B AR/ HEEE: RFARE@RLITE
#4 4 % B @ IR
LER it 165
WP G H3: 100717
http:// www.sciencep.com

s 4 ® 47 Bk
RREHBRRAT SHBEEEe

*
20034E5 S — R P& 787X960 1/16
2003 45 AS—WENRl EDgk: 233/4
EN%: 1—2 000 F¥: 451 000

CarT e R e, TR 3 SRR R R>)

AT

Bifi 35 3 S LA) L B = A A A dr 2 T R, R VSR EARWTY K, 3
SRR R A [Rt R e, BRI A . XA AR B (AR AR R B A 2
PER . 20 teg 60 AFfCAERAFfELEE AT R IR B4 B8 T AL e 8 - I &
BB, TR E BN 60 FERZL TN S0 F TR L, 2 70
RS IE R AR 2k 80 RN B LA R AT & ik, EL BNl M X R AT R 5

T [A] % R AR T &7 R AE SR TT RGBS R o R P A R A JEmt & 8
MM, B, B, 940K, HEFEAXARKBLENLE, RIFRIEIT A&k
FOA S B U TR R, FEIR KARBE FRAR T S a1 X R AR K v T
RFFRIHET, LUG 8K & B PP B AEf, TR T 1 1) X R 89 pr ikt

20 20 80 AR 90 4EAY), SofE B T LR Xt R A it k. Hep,
Booch, Coad/Yourdon . OMT il Jacobson % J7 {453 T 1 [a] 5 S5 FF & A 1Z AR .
BRI BV £ H R R BES AR MR, BMERESAER, & AR ERFRE
WA, #@t 90 FAURFEERIRZ FEFE, ATESHAREIAR R b BEE 1A
St B, XA HEAKS RS, I R S TR A A HH SR
EMFRRBARKNES, ARTH PR SIME. EXFHERLT, £—88NE5
(UML)F 90 FACH B A

UML 7 A AR T =L 1A) A S B %8 % %K G. Booch. J. Rumbaugh I L
Jacobson B S E1E. MiTAAZFO R T KEA HEAEM S, f UML f#EE
MZFRIEAERRE EERE T AR — RO 2, 3 B3R T RFR P SHE S ot —2 e
FIBLE . UML AR BT & 0 RGAR RIS AL T M AOHES:, MR FR T,
SO —BAOREIXUAG . 1997 4E 11 F UML # OMG HZUER RN WhnfE B s
&, HFERAIS Y JUAE Tt & T O 3 S F A ENHE & E bR

UML FEEEFNE A SO T 7 KB TAE, A& FP G T X R 2
EAEIE L R S U SO S, MDA FERRS M RE S, e
iz X SR ORI T & . UML NILL—FPEEHE S MBS BB, #HESEPr—t
FARKE N, REEIEMNES FHMERCEA RS, (B e 0 m s s hi
Je: DAFE A B R AR s 0 E A .

. M UML B BRA TGS, 28] TiHEV= A WER, OMG HIRAIFIRAF
FISCRHEEHE E T35k R Tk FrERIsbSL, fERA BB P . B8 A

i 6] 4 . 7 4 R BRIt
TG MEFR AN ARG, WG R RS, G 5ERNRSE . i AL R
g, kARG, RERME. TJUEREHE TR TR R, o B
BB PRSE . 1 B M AR Fi s pucdd, ol AT 240, Bl
it S ACPERRR . Al sk I PR S5 ST R, AR

7£ UML REZe &M BLARA Y, BABIE T Ri— A b I BRpERE R . B A
i) UML2.0 iRASK 25 UML 19 X —KE KRS . Kok i UML ¥ 10 18 5 Kk .
ATPATIE . K S Sa e, RERA A T AR A i .

AR T S XS ARF UML 45568 12 445, OB T 1 e X S8 AR R 5 i
RIEHHLL K UML BT ahZs . Hoh b Koot i) 3 S 8 B o7 5 SE R A A X
BEILAS. (R RAGEEBET) FEIHE TR RAEARES, 5T,
AAFTG . AT TR DL R AR FR G54 S5 0T T LAF M 1) %o SR B AR STl o A7 A 3
WHERS s (FH UML TG R 88) A T X R REE . 27
BrEt. BB B AR S ik S ER . (RRAEE) N T e e
RIhEEFENEROAE5HA,; (UML XS IEHHERE) W) S T2 MU i)
S G S HITR A AR

W K UML 7E4R e S s Fl A X FE LA . (UML SR RGEHF L) 1he 7138
it RS AT EXT UML #H79 B A (1 UML Mt web NIRRT) it Tia
Fi UML #4T Web B FHEBEFTNOZ I B AR 5k, (R R ARG £R 4
F5 T H) A4 7% UML B T a5 R i St o 4R 10 i 5 T H, (W4,
. HEZRE UML) HE T anfiliz Al UML S i i) 5o 52 A9 3 B AR ——Fa - HE SR b
AREHIH %M. (UML 5 Visual Basic W B A) EEHE T UML R F|
Visual Basic 2 /¥ 8 55 B 1 .

NBEANLHRBEEARGERAS: (COM FHF0L) M (ATL HEARNE) , &
AR T 3R AR TR AR ——COM #l ATL £ AR B9 FHH: 5 SHR %

B —A (Executable UML i RNHE) . XA B T A4 UML A& 5 H
FrEAR, AR A IHIE SAHL LA R ACRS A B shA s AT RE . AR ERok &
B —Fof o AR =

B2, XEBIEXMNALS T XA R T B ik 58K, [
At X} I AR R S SUS B R | TR ARNE TIRAWN G, AEENECE LW &
P THIHYSUR, PTLADE, B—AEPRE .

HETFIE, Frm AU R RIEE AR E, SERRREE ., S 5.

dwmKFHFEE FEA B

Preface

bject-oriented programming relies on programming languages. However, the

concepts of objects transcend any specific programming languages. Many design
patterns offer efficient modeling of static and dynamic object relationships. They can
be used as the building blocks for sophisticated software systems. Similarly, at a sys-
tem level, object-oriented architecture provides a lucid, high-level description of
interconnected objects.

Tools may change. Programming languages may go out of favor. Yet the foun-
dation of object design and architecture, and the art of applying it, will remain sound
for a long time.

This book systematically presents the basic concepts of objects and practical
object design patterns (both static and dynamic). It helps readers to gain a deep
understanding of the patterns, allowing them to find design solutions quickly. In
addition, the topics are forward looking, encompassing persistent objects, distributed
objects, interface design patterns, XML (eXtensible Markup Language) object mod-
els, Web applications with thin clients, and so forth. Going beyond the design level,
the book discusses object-oriented architecture, covering clients/servers, multi-tier
systems, federations, agents, and others.

The Unified Modeling Language (UML), especially its graphic notation, is used
as the primary means of presentation. The contents are independent of specific pro-
gramming languages, making the book a general-purpose reference. However, many
exercises do relate to certain languages (mostly Java). They help bring the readers
closer to implementation and foster a concrete understanding of the underlying con-
cepts. In addition, a wide range of real-world case studies and examples help eluci-
date these concepts and their practical application.

I did not use UML to specify all the details of an object design. For example, the
UML Object Constraint Language is not used. In my opinion, source code with adequate
inline comments is the best place to document the detailed logic of object behaviors.

X PREFACE

This book can be used as a textbook for university or industrial training
courses, or as a reference book for courses on object-oriented programming lan-
guages. This book is also suitable as a reference for mid- to advanced-level software
professionals and graduate students. Many exercises are derived from actual projects.
They expose readers to the full complexity of real-world systems.

Organization of the Book

This book has nine chapters, including several integrated case studies throughout the
book. Chapter 1 describes the basic concepts in object-oriented programming, which
include object, class, association, aggregation, servant class, and inheritance. It also
introduces some basic notations of UML.

Chapter 2 discusses the common patterns in static design. The focus here is on
the static relationships between classes. The dynamic or time-dependent behaviors
are left to later chapters. I systematically present simple and complex patterns. They
allow object designers to design with patterns rather than with individual classes.

I note that the distinction between analysis and design is vague. Analysis is
more on understanding the concepts in an application domain and investigating the
requirements. Design is more on finding a solution and verifying that the solution fits
the requirements. With a concrete understanding of the object concepts and the rela-
tionships behind the static patterns, one would naturally apply object analyses and
designs in an iterative fashion. The ultimate criterion for an appropriate object design
is its fitness to the requirements.

In Chapter 3 I first present the basic concepts on database management and per-
sistent objects. I then discuss different strategies to make objects persistent, particu-
larly those involving object-oriented databases and relational databases. I also
examine object-relational mapping in detail and give a comparison between the two
types of databases.

Chapter 4 introduces some advanced topics in object modeling. They include
abstract classes, multiple inheritance, interfaces, inner classes, collections, packages,
and components. These are extensions to the basic object concepts. I also discuss the
reverse engineering of object designs and the identification of irreducible patterns,
which is presented in Chapter 2.

Chapter 5 describes modeling the dynamic behavior of objects. I discuss use
case analyses and object sequence diagrams. I also introduce the important concepts
of client/server and distributed objects. For distributed objects, I cover interface defi-
nition, and the Common Object Request Broker Architecture (CORBA) standard
and its operational mechanisms.

Then in Chapter 6 I present various interface design patterns. These patterns
are intimately related to the dynamic behaviors of their constituent objects. Such
behaviors are documented with sequence diagrams. I also discuss interface pat-
terns related to CORBA objects.

PREFACE Xi

In Chapter 7 I elevate the discussion to the system level. I describe various
object-oriented architectures, including procedural processing systems, client/server
systems, layered systems, multi-tier systems, agents, and aggregations and federa-
tions. Note that the distinction between architecture and design is not absolute. In
architecture we are more concerned with the coordination between components,
overall system performance, and scaling properties. In design we focus on the details
within a component, an interface, or a subsystem.

Chapter 8 gives summaries and notes for the preceding chapters, whereas
Chapter 9 provides answers to all exercises.

The integrated case studies serve as real-life examples to illustrate the practical
applications of the concepts. They appear at the ends of various chapters, culminat-
ing in Chapter 7 with a discussion of their system architectures. Readers are highly
recommended to work through them in some detail. A concrete understanding of the
basic concepts can only be built through hands-on design and implementation.

Sections with an asterisk after their titles may be skipped during the first read-
ing. They are topics with somewhat narrower interests. Readers who are primarily
interested in software system architecture may proceed directly to Chapter 7, which
can be read as a survey of different architectural patterns.

Finally, the appendices provide various reference information. In particular,
Appendix A summarizes UML notations, followed by a quick look-up table to all
object designs appearing in the main text and exercises. Appendix B provides a list
of code samples for each chapter. Appendix C lists the features of various object-
oriented languages.

Online Resources

Fully functional code samples are available from http://www.awl.com/cseng/. The
code samples have more than 40,000 source lines and are all written in Java. They
cover nearly all examples described in the main text and most case studies. Appen-
dix B lists the sample code for the chapters. Studying the code will help solidify

the reader’s understanding of the designs. Readers are encouraged to extend and
enrich the sample code. Furthermore, students in courses on object-oriented pro-
gramming languages may implement the designs appearing in the chapter exercises
as additional exercises.

Acknowledgments

I thank my wife Monica for her patience and encouragement during this book project.
I wish to thank Perry Cole, Dave Collins, Stevan Mrdalj, and Atma Sutjianto for their
insightful comments and suggestions on the manuscript. Special thanks are due to Ross
Venables, Paul Becker, and their colleagues at the editorial office for their efficient han-
dling of the manuscript. The feedback from Amy Yuan and other students at the Uni-
versity of Maryland on an early version of the manuscript is gratefully acknowledged.

CHAPTER 1

CHAPTER 2

Contents

PLEface «ocoeneeiiieiiieee et sae e e eee e s eesra e e e e e e e e s eneae e ne e e raean xiii
Organization of the Book..u:wisinsansmssnssssosssasmsssassssmsssnss ix
Onling RESOUICES «ev..veeeuieeiaeniriieiieeieesreesneeenneesnsessaeecssesnsasnsas X
Acknowledgments..........ccoveeiiiiiiiiiininicc e xi
Basic CONCRPLS...cocmuusssemisssississausses 1
1.1 TheNature of Objects... mammmmmmmmammsmnsovmssssammimisses 1
1.2 Unified Modeling LaNGUAGE ...cc.cisssussnsssassssonsssssssssssaisnssisisasios 3
1.3 UML Notation BasiCsc.cceccroeereerericiiieniieeesseceseneesesineneens 4
1.4 Object Creation and Destruction.........cceeueeeuereeeceecneseccrecsennnens 6
1.5 Associations and Links........ccceeeiiinmiiieiniiiniicnnininicnecceseeeeneens 7
1.5.1 Binary Associations and Linkscccccceeiiinvieniiccinnnene 8
1.5.2 Ordering and SOrting.........ccceceveiiumiucnenieniensncinenseinnnens 9
1.5.3 Navigation and Referential Integrity........ccoervrrruerricncne 10
1.5.4 Ternary and Higher Order Associations........cccccecevinnncn 11
1.6 Aggregation and COMPOSITIONc.ssssssssessosssssssssssassssesssssasssssssos 13
1.7 Servant Classes and Delegationsussassmssmsvenenssemmsrmassasssnss 14
1.8 INREritanCe.....cciiccriiicciieieiiiniiinieieee s saeesesssesesssssssssssssnsasanenns 15
1.8.1 Inherited versus Servant Classes........cceeceeeruicenreecsecrnacens 16
1.8.2 Polymorphism and Object Substitutionc.ccevivianneee 17
1.9 EXEreisesccscsssisasnoesnvsanissesmasssssssivnssissssorinssssmassvansusssasssssaees 19
Common Patterns in Static Design 21
2.1 Collection Managers i ississsisssmississsvassmisssinsssaisssssssns sssusss 21
2.2 CONPAIMNETS iussasssssssvssssamsssissasssssssasssassossassasssssssanssaassssssyssavansss 23
2.3 Self-Containing Classes, Hierarchies, and Networks 24

iii

iv. CONTENTS

CHAPTER 3

24 Relationship LOOPs sceusssssasesssussssssssssssssssssasssmssssossasgessansssansss 26
2401 Relanionship FISSION cememsrarmpmros v 30
2.4.2 Inheritance of Relationship Loopscccccvecuireruennne 31
243 Double Loops® cicgnsausissmssimisnsmseosasimmsmims 32
2.4.4 Three-Tier Relationship Loops®ccccuiniinnniinniuianiens 32
2.5 Binary Association Classescccieeiiiieeiiiiniiineiieniciciiniesnssen 33
2.5.1 Implementing Binary Association Classesccuvuveunne 36
2.5.2 Recursive Association Class.....ccuuienniiieniinnniiniiin 38
2.6 TheHandle-Body Patterccesssusssesissssissssisissasssnsssssosnssssinsssasessss 39
2.7 Dynamiic SehEMa s imesssssssmasssrsassensisrssssvsninssessans ssss ssnsssmssinsssass 40
2.8 Shared ObJject PoOIScocueeiuiieiiiiiiiireiieniiricniscesteesnesnessieesssessns 141
2.9 Object Model for Extensible Markup Language........ccecceiivranene 43
2.9.1 XML BasiCS: misisamsssirisssasinsssssssisemsrnssssssressmarissssrosssnsss 44
292 XML Object Models ..cisscissmsssosisesssssssssasinsasnsass soasase 46
2.9.3 The Strengths and Weaknesses of XMLccccecueervrenenns 48
2.10 Case Study: ATM System Software—Part 1......ccccceereeeirerrruennnen 49
2.10.1 Projec;,t DesCription i sscissisisssssssnsssaasssssinsnsnisssvansavssnanises 49
2,102 State Analysis-and Desi@ncimmsussosssmscsammasisssssusmvsnsass 50
2.11 Case Study: Shared Whiteboard—Part 1cccovvvreeernerivunrsvannnns 53
2.12 Case Study: Access Control Lists—Part 1....cccceevririienrinserienns 61
2,13 EXEICISES .uuvvrurirrininsniersennssnesssessssscsssnssnsssssnssssnnsssssssssssssssssnsnns 63
Persistent Objects versnennens 69
3.1 Transactions and Database Management Systemscecveruee. 70
3.2 Object-Oriented Databasescccvveereieeririnririvrernersseessieneesnnees 71
3.2.1 Database Roots and EXtentsccceecemcerneeirceerncnsnnnns 72
3.2.2 Persistence-Enabled Objectsccccceerraeereciicrnrnenreneenn. 74
3.2.3 Destruction of Persistent Objects........ccccveueeieerriceniucane 75
3.2.4 Schema Evolution.....c..oceeeeeiiceeiiininicieieeeeccccee 76
3.3 Relational Databases........ccoooeeiiiinnieiicrieeieeeeceece e 76
3.4 Mapping Persistent Objects to Tables........ccccverveeeciianirieccnnae. 77
3.4.1 Classes and Binary ASSOCIAtionsceeeeeeereuerrieessuaens 78
3.4.2 Aggregation, Composition, and Servant Classes 80
3.4.3 Ternary and Higher Order Associations..........c..ccceuuee. 81
3.44 Reducing Ternary Associations to Binary Ones*........... 82
3.4.5 Degenerate Ternary AssocCiations®cccoeceeeueeirncennnns 85
3:4:6 INHETILATCE usnommssnnisassessrsaisnaissrassssnssssmsossenmovsninesusasss 88
3.4.7 Mapping Rules Summarycccceevereriencennnnvcsccncnence. 90
3.5 A Ciritical Comparison Between Relational and
Object-Oriented Databasescoceeeiveerieerecsesiaeseeseecenssenenes 91
3.5.1 Optimization of Relational Tables............cccccevvrrurnnee. 93

3.5.2 Optimization of Persistent Objectsccccceevrueniieenencnnens 95

CONTENTS V

CHAPTER 4

CHAPTER 5§

CHAPTER 6

3.6 Case Study: ATM System Software—Part 2......ccccoverrieniiiarersannns 97
3.7 Case Study: Shared Whiteboard—Part 2cccceceeeriuerrnerruenns 97
3.8 Case Study: A Rental Business—Part 1.......cccocveeriivviiiencncnniinens 98
3.8.1 Initial Analysis and Designcccevvuvrereneriueiienecssnnisnnns 98
3.8.2 Full Object Design for Multiple Stores.......ccccevvercinnne 101
3.8.3 Detailed Object DeSIEDS s weevsmsrmmesssumssapmsseviresssonsins 101
3.9 Case Study: Access Control Lists—Part 2......c.cccccvvueviecrinnennne 110
3,10 EXEICISES cerererueeeeeereciiineeieeessranreee e ssasaeee s mneeeasssssnnesseesesnnesennns 116
Advanced Topics in Object Modeling...........ccoonsuuceessennsenssensncsnns 125
B0 ADETACE ChABERE wovornovsasvsiosraesmimamine samry TSRO S NET IS e SRS 125
4.2 Multiple Inheritance........cccocivvereiiiiiniinciiieeniinieccecicce e 126
4.3 INCEIfACES ..ooeecriiiiiiri ettt sae e 128
B TOOOE SRS i iiinsmms isica Sihasnsii8 i Sumimeoin o mimamm Sm S 50 b AT 129
4.5 COlleCtions . cssussvesvrimmsaosissssassssnssrspvassssssnsssnsads sisssssssnsasspinssss 130
4.6 PaCKaBES c.uooeeieiiieiecieent e s 131
4.7 COMPONENLS w.uuvverrereeerarrrrenraaeenessneerassesassinseesssenssssasessreesessseses 132
BB INORES 00005055554 i 8 5 o 2 o S5 AR ik SRR TSSO 133
4.9 UML Notation Basics for Dynamic Modelingcccccceruencvenene 134
4.10 Reverse Engineering and Irreducible Patternsccccoouerveenecnnen. 135
G 10 EXCECISES wusvmsmunessianssvnessinemssaassmssmssesssssyssssssssmsonssssss rassmsarssess 137
Dynamic Object Modeling Basics..........cceusuiusmunsessmnsinsmasssssassessensssssnnss 139
5.1 UseCase ADBIYSes o csmisuvmimsnmismsamtissasesrmiss e 139
5.2 SequUence DIABraMS «.ouucvessussisismsssssnssssnsasissnsasssssasnsnnsssossssasssovss 141
5.3 The Client/Server Model and Distributed Objects.........c..cccu.ee.. 144
54 Interface Definition and Client/Server
Development:ussissssssinssssssssisssssinnsssssissrossssssssasarsmssasinosss 146
3.5 The CORBA SBRAATd ...ocnsmmmssomsimssnssasasssasammansssarsarsssssunssonss 148
5.6 Interface Definition Languageccouvmseiiunsiniensinssesivssessnisonns 150
5.7 Statechart Diagrams.....c.cccceceeciniriiieiseicinnisineeniesssissssesssssssesnns 154
5.8 Case Study: ATM System Software—Part 3.......ccoceveriirceriunnnnae 156
5.9 Case Study: Shared Whiteboard—Part 3cc.ccceeiveviiinriiinnnnnns 159
5.10 Case Study: A Rental Business—Part 2........cccuverniivensiineesinennnne 162
5.11 Case Study: Access Control Lists—Part 3c.cccevveerueenvrriscnenans 165
FI2 BXOICISES ciscisivsassinisansesnnassisintisarsqusssssasssssorransannrussoraassannsssonsrsses 166
Common Interface Design Patterns.........mmmmmmsmsmsassasssmsssrsses 169
6.1 Object WIaPPerS...cccercuesrirersinessiesiresnnessnsssnsernessnessnessessesssnsssans 169
6.2 ODbjJect AdAPLers....ccovceeererrrreerrnerisenerssessinsessanessasssssssssesssesessessns 171
6.3 Object Factories and Managers........cceeueveeereresransessessesssssssssasens 172
6.4 Interfaces as Servant Classes.........oeresninisesesssssassesasasssssssnssassess 173

vi CONTENTS

CHAPTER 7

6.5 Servant Interfaces in Event Processingcoeeeevevrvenevrneereennen. 175

6.5.1 Single Event Pushing and Observers........ccceveviinivriuniaens 176

6.5.2 Callbacks from Server Objects.......ccccevivveiriercnrecniaranea 177

6.5.3 Subscription and Notificationccoeevverireeeieeiessesssneens 177

6.5.4 Model-View-Controllerccocurrmruiresieerircsnreirnsanernnas 180

6.6 Relationship Loops with Interfacescccerrenricrerianieesecrurcnnanae 182

6.7 Inheritance Ladders.......cccvemeenirieniiicnessinniiisnninnesisenseseenesaecnas 183

6.8 CORBA ODJECtS...c.ueciuieiriecresiaeriaeenieensecsaesirersesnnsssnesssssnscsnenseas 183

6.9 CORBA Client Stubs.....c.ccevrieerienisierrrsereesesreeessesseessessssnnsens 188

6.10 Tactics in Designing Distributed Objects®cccceveerreererriannens 189

6.11 Proxyand Surrogate Objects.sussusssrssassesismmissssssissssossissss 191

6.12 Case Study: ATM System Software—Part 4........cccceevveecnecreennn 192

6.13 Case Study: Shared Whiteboard—Part 4ccocevueervviveevueennene 197
6.13.1 Message Port—An Infrastructure for a

Collaboration Group sswisssssssissssiamssimsmvsasessassonns 197

6.13.2 Sequence Diagrams for MessagePortc.ccceeuveecuirannenne 201

6.14 Case Study: Access Control Lists—Part 4ccccoeeveirnencnennnne 203

6.15 EXEICISES ..ciiouiiririieeiiieeeeeceeseereeeessreneneeessasessnnseeananenssesnnesans 204

Object-Oriented Architecture............. 207

7.1 Notations for Architecture Diagramsccooeevercvrenessersrennneens 208

7.2 Procedural Processing SyStemsc.ccevvverereeisiescreassesssessuenseens 209

7.3 Client/Server SYSteMSccrreueireneerieersceeeriaersseaessaeeseaerssassssanssesns 211

7.3.1 “Thin Clients” and Object IDsccccceevrvrcerviervirennns 213

7.3.2 Web Applications Using the MVC Framework 215

7.4 Layered SYSTemS......coceeeruienceieneinntnsieiesenseenesie st e sae s e ne e 217

7.4.1 Layering with Servant Objects.........ccecueevirccesncrurnenns 219

7.5 Three-Tier and Multi-Tier Systems.........ccceeuveeunenn. s sesiaessHeERRes 221

7.5.1 Clustering and SeritaliZifg ..oveswsossasssimsmmosssmsssssssneres 223

ALV L AU S WO 226

7.7 Aggregations and Federationscccccccevuevuienericnicncieinncennens 228

7.8 Architectural Patterns in UML*cccovvriinenincereeeecerrenene 230

7.9 Case Study: ATM System Software—Part S........ccoeeeeeeiruciriernenns 233

7.10 Case Study: Shared Whiteboard—Part 5cccccevveeerercverenenns 236

7.10.1 The Shared Whiteboard Aggregation.........cccccceveeuennennnn 236

7.10.2 Image Exchange Formats and Policies..........c...cccueue.... 237

7.10.3 The Interface and Control Layersc.ccccvvevveniirerienennes 240

7.10.4 Synchronization and Related Issues®ccocvrueiuennennee 244

7.10.5 Trace Table for Requirementscccoeevrieneiienvuisnssvasunnnes 246

7.11 Case Study: A Rental Business—Part 3......c.coceevumeieereecncciaenuenns 247

CONTENTS Vii

CHAPTER 8

CHAPTER 9

APPENDIX A

APPENDIX B

APPENDIX C

7.12 Case Study: The Enterprise JavaBeans Framework............c........ 249

7:12.1 Static STrUCtURES s srsvivasmoismmssimasasittaaes: 249

7.12.2 Resource Management Strategies.......cccoeevueeireeereecannens 253

7.12.3 Dynamic Behaviors of Entity Beansc..ccceeceeecvneeennn. 254
Fill3 EXOICISES isiisinss irtiucnemssissse fismainssotinsansrinentinitnsnrame Snremomennnisssmmneasios 258
Summaries and Notes.........ccuuurenminimmnsssassssssussssasienns P— 259
8.1 Chapter 1 Summary and NOLEScc..eerrevreriuenieiiieeiieieeeeseerians 259
8.2 Chapter 2 Summary and NOLESccecirrverrinsrinriinssssosseencsssens 260
8.3 Chapter 3 Summary and NOLeS ...c.uieniisasisnesssssnssossssassssssaassaons 261
84 Chapter 4 Summary and Notes .u.sassssioumssssisnsssssssmassonssss 262
8.5 Chapter 5 Summary and NOTES s cussiovsssanesansussensmssssssannssovss 263

8.5.1 Notes on CORBA-COM Interoperabilityc.ccuvucennane. 264
8.6 Chapter 6 Summary and NOLESccccvveirenrierieiieniireniiesesssesienens 264
8.7 Chapter 7 Summary and NOLESceiiiieriinivreesiiensessensesssnssasnsssens 265
8.8 Case Studies SUMMATYccevrueeirereerrsreeeenreeercsaeesiressssnnssesassenns 266
AnSWers t0 EXErCises.......immmmusemsamsisasscassssrsaseses —— SU—— 269
9.1 Chapter 1 EXercise ANSWEIS . uiissasssssssssssssrsssrsssssssssssonsssansssasss 269
9.2 Chaptet 2 EXEICISE ADNSWELS cyusessssssssssmsomsisessamnssnsessasssmanaimmss 274
9.3 Chapter 3 EXercise ANSWELS....ccueruerasseruesernissssssesessasssssassseans 294
9.4 Chapter 4 EXercise ANSWELS...ccceceveeivrversrneessnessnnersenesssessassennenes 310
9.5 Chapter § EXErcise ANSWELS..cccieeerrierseeressessaressnsesssesssansssesssanne 313
9.6 Chapterf EXercise ANSWELS :icsisssisssssosssssvssssississssssmssnsonsisosss 318
9.7 Chapter 7 EXErcise ANSWETS...cc..coverrernerrineernueisseessanesssrssnesesnanns 328
Quick References for Object Designers...........cco.eessemsesscassensssssssnssessenns 341
Sample Code Reference List...........cooerrmnnnee verseersnesensaresenane 347
Features of Object-Oriented Languagesccucurmmsesensmmsensassasssnses 351
REFEIENCES.........cece e 353

CHAPTER 1

Basic Concepts

Traditional procedural programming implies a flow of steps. From step 1, step 2, to
step N, the whole process can be represented by a flow chart, which may include
decision points and branches. However, as computer programs are applied to more
complex situations, such as interactive user interfaces and systems with interconnect-
ing components, the keeping of all possible procedural branches in a number of pro-
grams becomes a formidable task. The situation is especially serious when a software
development project involves a sizable team of people, who have to coordinate their
subtasks such that the integrated system works seamlessly.

To overcome these difficulties, breaking a computer program into relatively self-
contained pieces is critical. Often, such a decomposition reveals the intrinsic logical
structure of the underlying problem. This leads to object-oriented programming.

This chapter discusses the basic concepts in object-oriented programming,
which include object, class, association, aggregation, servant class, and inheritance.

1.1 THE NATURE OF OBJECTS

Objects are abstractions of physical entities or conceptual things. An object has states
and an inherent identity. It attains certain behavior through a set of predefined opera-
tions, which may access or change its state.

An object encapsulates its properties (called attributes) and the operations that
access or change those properties. The state of the object is determined by the values of
its attributes. The object state is set by the object’s operations. The inclusion of opera-
tions distinguishes objects from mere data structures. Operations are identified by their
names and signatures (input, output, return arguments and their types). The implemen-
tations of operations are called methods in Java (or member functions in C++).

An object class is the abstract descriptor of a set of object instances. It describes
a set of object instances that share the same attributes, operations, and relationship

2 BASIC CONCEPTS

with other objects. For example, the Person class in Figure 1-1 contains attributes
name and age, as well as operations for changing the name and incrementing the age.
The Person class does not describe any specific person. The object instances of the
Person class, on the other hand, have the information for actual persons.

For a physical entity, such as a person, the corresponding attributes are easily
identified. Its operations, however, depend on how the object should behave in its
environment and how it interacts with other objects. Determining the behavior of
objects is a key to good object-oriented programming,.

Objects corresponding to conceptual things also encapsulate attributes and
operations. The only difference is that the attributes are properties or states that
belong to a process, transaction, event, and so forth, rather than a physical object.
A trade object example is shown in Figure 1-2.

Through abstraction, an object class generalizes a few specific object instances
to a host of similar instances, thereby allowing efficient use of the implementation of
its operations.

Although it is not our goal to map object designs to specific programming
languages such as C++ or Java, it is beneficial to know how an object class is repre-
sented by such a language. Figure 1-3 shows the pseudocode for the Trade class.
(The code is presented in Java style, but does not carry visibility modifiers like
public or private. In other words, the default visibility is used.) The operation
calculatePrice() retrieves the unit price (probably from a database), then calcu-
lates the total price, which is a property of the trade itself.

The term object is often used to indicate either an object class or an object
instance. One simply needs to refer to the context to find out which meaning an
“object” takes. Moreover, in performing object design, one often has to keep both
meanings in mind to understand fully the relationships between objects.

Obj ect Person | — class name
Class name «——attributes
age
changeName(...) operations
incrementAge()
Object pl: Person p2: Person
Instances name = “John” name = “Mary”
age =20 age =18

FIGURE 1-1. Object classes and instances from physical objects.

1.2 UNIFIED MODELING LANGUAGE 3

Object Trade «+— class name
Class product itiibates
quantity
fotal,_price | operation

calculatePrice()

Object tl: Trade t2: Trade

Instances product = “soap” product = *‘pen”
quantity =10 quantity = 80
total_price = $8.5 total_price= $23.76

FIGURE 1-2. Conceptual objects.

class Trade {

String product;
int quantity;
double total_price;

// operations

void calculatePrice() {

// Retrievesunit_price, then

// total_price = unit_price * quantity

// Discount may apply for large quantities.
}
}

FIGURE 1-3. Java-like pseudocode for the Trade class.

1.2 UNIFIED MODELING LANGUAGE

When we discuss objects, it is natural to present them using certain structured
notations, as we have done in Figures 1-1 and 1-2. This has proved to be an effec-
tive way of modeling objects and documenting object designs.

The Unified Modeling Language (UML) is a general-purpose modeling language
designed to specify, visualize, and document the artifacts of a software system. The
visual notations of UML are particularly suited for object-oriented software designs.

4 BASIC CONCEPTS

UML is a unification of previous modeling methods such as Booch [Booch
1994], OOSE (object-oriented software engineering) of Jacobson [Jacobson et al.
1992], and OMT (object modeling technique) of Rumbaugh [Rumbaugh 1991]. The
development of UML began in October 1994, when Grady Booch and Jim Rum-
baugh of Rational Software Corporation began their work on unifying the Booch
and OMT methods. In the fall of 1995, Ivar Jacobson joined the unification effort
and merged in the OOSE method.

In 1997, the UML Partners consortium was formed. The consortium produced
UML 1.0, which was submitted to the Object Management Group (OMG). Further
inputs from several other companies were later incorporated to produce UML 1.1
in September 1997. UML 1.1 has been submitted to the OMG for adoption [UML
1997).

Compared with previous modeling methods, UML has the following two
advantages:

1. A unified standard of semantics and notations brings regularity and stabil-
ity to the software industry. Companies can make greater reuse of previous
object designs based on a mature modeling language. Tool developers can
focus on enhancing features rather than catching up with several evolving
standards.

2. The joint effort yielded improvements from previous methods. It also
helped to strike a balance between expressiveness and simplicity. It allows
the object modeling method to evolve as a single body rather than as sepa-
rate efforts, eliminating the potential for confusing differences.

Today, many companies are incorporating UML as a standard in their develop-
ment processes and products. UML can be used to model both object structures and
behavior. Structural models (or static models) focus on object classes, attributes, and
the relationship between objects. Behavioral models (or dynamic models) emphasize
object interaction, collaboration, and states.

Next we briefly describe the basic features of UML, which are used to illustrate
our discussion. Other more involved topics are covered in future sections when
needed. We note that UML contains a rich set of semantics and notations, and we
refer you to other reference books [Fowler et al. 1997, Page-Jones 2000].

1.3 UML NOTATION BASICS

We have already seen the notation for object classes in Figures 1-1 and 1-2. Here we
specify it more precisely. As shown in Figure 1-4, a class (long form) is represented by
a solid-outline rectangle with three horizontal compartments. The name of the class

