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Preface

bject-oriented programming relies on programming languages. However, the

concepts of objects transcend any specific programming languages. Many design
patterns offer efficient modeling of static and dynamic object relationships. They can
be used as the building blocks for sophisticated software systems. Similarly, at a sys-
tem level, object-oriented architecture provides a lucid, high-level description of
interconnected objects.

Tools may change. Programming languages may go out of favor. Yet the foun-
dation of object design and architecture, and the art of applying it, will remain sound
for a long time.

This book systematically presents the basic concepts of objects and practical
object design patterns (both static and dynamic). It helps readers to gain a deep
understanding of the patterns, allowing them to find design solutions quickly. In
addition, the topics are forward looking, encompassing persistent objects, distributed
objects, interface design patterns, XML (eXtensible Markup Language) object mod-
els, Web applications with thin clients, and so forth. Going beyond the design level,
the book discusses object-oriented architecture, covering clients/servers, multi-tier
systems, federations, agents, and others.

The Unified Modeling Language (UML), especially its graphic notation, is used
as the primary means of presentation. The contents are independent of specific pro-
gramming languages, making the book a general-purpose reference. However, many
exercises do relate to certain languages (mostly Java). They help bring the readers
closer to implementation and foster a concrete understanding of the underlying con-
cepts. In addition, a wide range of real-world case studies and examples help eluci-
date these concepts and their practical application.

I did not use UML to specify all the details of an object design. For example, the
UML Object Constraint Language is not used. In my opinion, source code with adequate
inline comments is the best place to document the detailed logic of object behaviors.
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This book can be used as a textbook for university or industrial training
courses, or as a reference book for courses on object-oriented programming lan-
guages. This book is also suitable as a reference for mid- to advanced-level software
professionals and graduate students. Many exercises are derived from actual projects.
They expose readers to the full complexity of real-world systems.

Organization of the Book

This book has nine chapters, including several integrated case studies throughout the
book. Chapter 1 describes the basic concepts in object-oriented programming, which
include object, class, association, aggregation, servant class, and inheritance. It also
introduces some basic notations of UML.

Chapter 2 discusses the common patterns in static design. The focus here is on
the static relationships between classes. The dynamic or time-dependent behaviors
are left to later chapters. I systematically present simple and complex patterns. They
allow object designers to design with patterns rather than with individual classes.

I note that the distinction between analysis and design is vague. Analysis is
more on understanding the concepts in an application domain and investigating the
requirements. Design is more on finding a solution and verifying that the solution fits
the requirements. With a concrete understanding of the object concepts and the rela-
tionships behind the static patterns, one would naturally apply object analyses and
designs in an iterative fashion. The ultimate criterion for an appropriate object design
is its fitness to the requirements.

In Chapter 3 I first present the basic concepts on database management and per-
sistent objects. I then discuss different strategies to make objects persistent, particu-
larly those involving object-oriented databases and relational databases. I also
examine object-relational mapping in detail and give a comparison between the two
types of databases.

Chapter 4 introduces some advanced topics in object modeling. They include
abstract classes, multiple inheritance, interfaces, inner classes, collections, packages,
and components. These are extensions to the basic object concepts. I also discuss the
reverse engineering of object designs and the identification of irreducible patterns,
which is presented in Chapter 2.

Chapter 5 describes modeling the dynamic behavior of objects. I discuss use
case analyses and object sequence diagrams. I also introduce the important concepts
of client/server and distributed objects. For distributed objects, I cover interface defi-
nition, and the Common Object Request Broker Architecture (CORBA) standard
and its operational mechanisms.

Then in Chapter 6 I present various interface design patterns. These patterns
are intimately related to the dynamic behaviors of their constituent objects. Such
behaviors are documented with sequence diagrams. I also discuss interface pat-
terns related to CORBA objects.
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In Chapter 7 I elevate the discussion to the system level. I describe various
object-oriented architectures, including procedural processing systems, client/server
systems, layered systems, multi-tier systems, agents, and aggregations and federa-
tions. Note that the distinction between architecture and design is not absolute. In
architecture we are more concerned with the coordination between components,
overall system performance, and scaling properties. In design we focus on the details
within a component, an interface, or a subsystem.

Chapter 8 gives summaries and notes for the preceding chapters, whereas
Chapter 9 provides answers to all exercises.

The integrated case studies serve as real-life examples to illustrate the practical
applications of the concepts. They appear at the ends of various chapters, culminat-
ing in Chapter 7 with a discussion of their system architectures. Readers are highly
recommended to work through them in some detail. A concrete understanding of the
basic concepts can only be built through hands-on design and implementation.

Sections with an asterisk after their titles may be skipped during the first read-
ing. They are topics with somewhat narrower interests. Readers who are primarily
interested in software system architecture may proceed directly to Chapter 7, which
can be read as a survey of different architectural patterns.

Finally, the appendices provide various reference information. In particular,
Appendix A summarizes UML notations, followed by a quick look-up table to all
object designs appearing in the main text and exercises. Appendix B provides a list
of code samples for each chapter. Appendix C lists the features of various object-
oriented languages.

Online Resources

Fully functional code samples are available from http://www.awl.com/cseng/. The
code samples have more than 40,000 source lines and are all written in Java. They
cover nearly all examples described in the main text and most case studies. Appen-
dix B lists the sample code for the chapters. Studying the code will help solidify

the reader’s understanding of the designs. Readers are encouraged to extend and
enrich the sample code. Furthermore, students in courses on object-oriented pro-
gramming languages may implement the designs appearing in the chapter exercises
as additional exercises.
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CHAPTER 1

Basic Concepts

Traditional procedural programming implies a flow of steps. From step 1, step 2, to
step N, the whole process can be represented by a flow chart, which may include
decision points and branches. However, as computer programs are applied to more
complex situations, such as interactive user interfaces and systems with interconnect-
ing components, the keeping of all possible procedural branches in a number of pro-
grams becomes a formidable task. The situation is especially serious when a software
development project involves a sizable team of people, who have to coordinate their
subtasks such that the integrated system works seamlessly.

To overcome these difficulties, breaking a computer program into relatively self-
contained pieces is critical. Often, such a decomposition reveals the intrinsic logical
structure of the underlying problem. This leads to object-oriented programming.

This chapter discusses the basic concepts in object-oriented programming,
which include object, class, association, aggregation, servant class, and inheritance.

1.1 THE NATURE OF OBJECTS

Objects are abstractions of physical entities or conceptual things. An object has states
and an inherent identity. It attains certain behavior through a set of predefined opera-
tions, which may access or change its state.

An object encapsulates its properties (called attributes) and the operations that
access or change those properties. The state of the object is determined by the values of
its attributes. The object state is set by the object’s operations. The inclusion of opera-
tions distinguishes objects from mere data structures. Operations are identified by their
names and signatures (input, output, return arguments and their types). The implemen-
tations of operations are called methods in Java (or member functions in C++).

An object class is the abstract descriptor of a set of object instances. It describes
a set of object instances that share the same attributes, operations, and relationship
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with other objects. For example, the Person class in Figure 1-1 contains attributes
name and age, as well as operations for changing the name and incrementing the age.
The Person class does not describe any specific person. The object instances of the
Person class, on the other hand, have the information for actual persons.

For a physical entity, such as a person, the corresponding attributes are easily
identified. Its operations, however, depend on how the object should behave in its
environment and how it interacts with other objects. Determining the behavior of
objects is a key to good object-oriented programming,.

Objects corresponding to conceptual things also encapsulate attributes and
operations. The only difference is that the attributes are properties or states that
belong to a process, transaction, event, and so forth, rather than a physical object.
A trade object example is shown in Figure 1-2.

Through abstraction, an object class generalizes a few specific object instances
to a host of similar instances, thereby allowing efficient use of the implementation of
its operations.

Although it is not our goal to map object designs to specific programming
languages such as C++ or Java, it is beneficial to know how an object class is repre-
sented by such a language. Figure 1-3 shows the pseudocode for the Trade class.
(The code is presented in Java style, but does not carry visibility modifiers like
public or private. In other words, the default visibility is used.) The operation
calculatePrice() retrieves the unit price (probably from a database), then calcu-
lates the total price, which is a property of the trade itself.

The term object is often used to indicate either an object class or an object
instance. One simply needs to refer to the context to find out which meaning an
“object” takes. Moreover, in performing object design, one often has to keep both
meanings in mind to understand fully the relationships between objects.

Obj ect Person | — class name
Class name «——attributes
age
changeName(...) operations
incrementAge( )
Object pl: Person p2: Person
Instances name = “John” name = “Mary”
age =20 age =18

FIGURE 1-1.  Object classes and instances from physical objects.
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Object Trade «+— class name
Class product itiibates
quantity
fotal,_price | operation

calculatePrice( )

Object tl: Trade t2: Trade

Instances product = “soap” product = *‘pen”
quantity =10 quantity = 80
total_price = $8.5 total_price= $23.76

FIGURE 1-2. Conceptual objects.

class Trade {

String product;
int quantity;
double total_price;

// operations

void calculatePrice( ) {

// Retrievesunit_price, then

// total_price = unit_price * quantity

// Discount may apply for large quantities.
}
}

FIGURE 1-3.  Java-like pseudocode for the Trade class.

1.2 UNIFIED MODELING LANGUAGE

When we discuss objects, it is natural to present them using certain structured
notations, as we have done in Figures 1-1 and 1-2. This has proved to be an effec-
tive way of modeling objects and documenting object designs.

The Unified Modeling Language (UML) is a general-purpose modeling language
designed to specify, visualize, and document the artifacts of a software system. The
visual notations of UML are particularly suited for object-oriented software designs.
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UML is a unification of previous modeling methods such as Booch [Booch
1994], OOSE (object-oriented software engineering) of Jacobson [Jacobson et al.
1992], and OMT (object modeling technique) of Rumbaugh [Rumbaugh 1991]. The
development of UML began in October 1994, when Grady Booch and Jim Rum-
baugh of Rational Software Corporation began their work on unifying the Booch
and OMT methods. In the fall of 1995, Ivar Jacobson joined the unification effort
and merged in the OOSE method.

In 1997, the UML Partners consortium was formed. The consortium produced
UML 1.0, which was submitted to the Object Management Group (OMG). Further
inputs from several other companies were later incorporated to produce UML 1.1
in September 1997. UML 1.1 has been submitted to the OMG for adoption [UML
1997).

Compared with previous modeling methods, UML has the following two
advantages:

1. A unified standard of semantics and notations brings regularity and stabil-
ity to the software industry. Companies can make greater reuse of previous
object designs based on a mature modeling language. Tool developers can
focus on enhancing features rather than catching up with several evolving
standards.

2. The joint effort yielded improvements from previous methods. It also
helped to strike a balance between expressiveness and simplicity. It allows
the object modeling method to evolve as a single body rather than as sepa-
rate efforts, eliminating the potential for confusing differences.

Today, many companies are incorporating UML as a standard in their develop-
ment processes and products. UML can be used to model both object structures and
behavior. Structural models (or static models) focus on object classes, attributes, and
the relationship between objects. Behavioral models (or dynamic models) emphasize
object interaction, collaboration, and states.

Next we briefly describe the basic features of UML, which are used to illustrate
our discussion. Other more involved topics are covered in future sections when
needed. We note that UML contains a rich set of semantics and notations, and we
refer you to other reference books [Fowler et al. 1997, Page-Jones 2000].

1.3 UML NOTATION BASICS

We have already seen the notation for object classes in Figures 1-1 and 1-2. Here we
specify it more precisely. As shown in Figure 1-4, a class (long form) is represented by
a solid-outline rectangle with three horizontal compartments. The name of the class



