T

1
PEARSON
Bialild

= Addison

HZ BOOKS | Wesley

35 New ways to Improve Your Programs
and Designs

(TR

(%) ScottMeyers

MW T W R

¥ China Machine Press

More Effective C++

(ZE3ZhR)

35 New ways to Improve Your
Programs and Designs

(2£) Scott Meyers Z

China Machine Press

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: More Effective C++: 35 New Ways to Improve Your
Programs and Designs (ISBN 0-201-63371-X) by Scott Meyers, Copyright © 1996.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A5 H X RZENAR i Pearson Education Asia Ltd. #2AHLAR Tl AR5 HAR .
REHREBRTF, TEUEMIREFHRPDREBAZE.

(PR T NRICIESEN (FRFEHEEFE. RIS NTRE S EE S
X) #EkiT.

A 455 T 5 A Pearson Education (RAE#HE HIRER) SOEHIRE, Tix%
AT RHE.

WA, L.
AHE@EmE LR RIA RIS

ABREAVEIZS . BF:. 01-2006-1936
EBERBE (CIP) ¥iE

More Effective C++ (¥3ChR) / () BEBHF (Meyers, S.) 2. —dt5t. HLb
TolkHihRtt, 2006. 4

(C++i% i3 B 4)

4K 3 : More Effective C++: 35 New Ways to Improve Your Programs and
Designs

ISBN 7-111-18830-6

I.M--- 0O.3%-- M. CiEZ-BFIRI—3#3 V. TP312
o E R AR B 5 E CIPE IR = (2006) 40298282

LB Tk AR FE GLsmmismx 5 E k#1228 MBS 100037)
T BiIRE

AL ECEREEENRIAG PR SIENR - BB e AT R 47
200644 A% 1 RS 1 RENRI

718mm x 1020mm 1/16 - 21E[Igk

ZEWr: 39.005¢

JUgAAS, AR, BRI, G, At RTEian
A Ehek. (010) 68326294

¢ C++iﬁ'ﬁ'%ﬁ/ugﬁ & A_kjFBETJ%‘

B C++iE A I H R ISO/ANSI C++4n#E[R] L3, LABjarne Stroustrup & HIC++
HEEGT— A REA DB SRA BT BEFEAERCH, FRIUEW, BRTRE
FCHUMERM A HESh, C++HR BRI S 4 M UL S 7E e e Al | K R i & Rt A ik mT LA LE 3R
45 HE MBI, iR, &, fHEEF.

X e R M A1 R B LA B L A AR o EE RN & R CEARMEEET, 58CE.
e, BEXLETEARPIEFB AL, CARFECHHIARNR &8 B EH A AR
BRAZ R FRTHEARSE., EMNERBTHEBARCHHEE, Hox MBS ERAS
HERRE, HER—AARBENEE. LR, X2 RERBHFRIECH
BEGIE HE 2 RISEERECR .

EAANNG, BFERERASL., K&E3. RiFE. RELTHEH, BRLOHE. KiE
B R YU BB D A S N B i AR EREME AR R — /1 B K AR 7 b & & TR
&/, &40k, REMENRAERITFRECHITERKIT AN, FEit, "TLARRMHE,
C++1 B K TE— B2 B b W LAY S H — A B SRR 7)l S Pk ST e B

BTLEEE N Y HIR T — KR BHIC++BEE, S RE THECHEF R/
B, HERAKEE LAETRKYLUCREFEETFCHIIET . FIfER S mAFFIR
R, MC++MEXM L L BER T —EWR#EIER. AMAETEZNWFHES, M
% .NET, JavaBi RSB LMER D, FEKE™ LIS, 58 LR
MR, KT “REHRE" NC++HESHNHGBLA #—PERa%, e
BATC++RI R E T LIEAE T AN EN.

UL Tl AR AT o e 4k E C++ “BRARAL” BE B, 2006
SERBREEREH —F “C++ikitHEE” W\B. XENBFRFES. SmvE, X
VE1E# h AL iEHerb SutterZE N E MM ACHE R ERIIARE . BHFE, WWEHE
FESEIARCH+EME, UAScAMAE, FBLBEmERE, B ENRFERZED,
hCiFEMECIRKHE, B—APHEMNMIBERXEIH, BEENANEEA.
EAXENBRSEEA GRS, RELOFZENBROBEAR. BB &RE®RA
B C++#EBEE AFTHITE .

x
2005512 A

B RIFEXE
www.royaloo.com

Praise for More Effective C++: 35 New Ways
to Improve Your Programs and Designs

“This is an enlightening book on many aspects of C++: both the regions of the
language you seldom visit, and the familiar ones you THOUGHT you understood.
Only by understanding deeply how the C++ compiler interprets your code can you
hope to write robust software using this language. This book is an invaluable
resource for gaining that level of understanding. After reading this book, I feel like
I've been through a code review with a master C++ programmer, and picked up
many of his most valuable insights.”

— Fred Wild, Vice President of Technology,

Advantage Software Technologies

“This book includes a great collection of important techniques for writing
programs that use C++ well. It explains how to design and implement the ideas,
and what hidden pitfalls lurk in some obvious alternative designs. It also includes
clear explanations of features recently added to C++. Anyone who wants to use
these new features will want a copy of this book close at hand for ready reference.”
— Christopher J. Van Wyk, Professor,
Mathematics and Computer Science, Drew University

“Industrial strength C++ at its best. The perfect companion to those who have
read Effective C++.”
— Eric Nagler, C++ Instructor and Author,
University of California Santa Cruz Extension

“More Effective C++ is a thorough and valuable follow-up to Scott's first book,
Effective C++. I believe that every professional C++ developer should read and
commit to memory the tips in both Effective C++ and More Effective C++. I've
found that the tips cover poorly understood, yet important and sometimes arcane
facets of the language. I strongly recommend this book, along with his first, to
developers, testers, and managers ... everyone can benefit from his expert
knowledge and excellent presentation.”

— Steve Burkett, Software Consultant

Acknowledgments

A great number of people helped bring this book into existence. Some
contributed ideas for technical topics, some helped with the process of
producing the book, and some just made life more fun while I was
working on it.

When the number of contributors to a book is large, it is not uncom-
mon to dispense with individual acknowledgments in favor of a ge-
neric “Contributors to this book are too numerous to mention.” I
prefer to follow the expansive lead of John L. Hennessy and David A.
Patterson in Computer Architecture: A Quantitative Approach (Morgan
Kaufmann, first edition 1990). In addition to motivating the compre-
hensive acknowledgments that follow, their book provides hard data
for the 90-10 rule, which I refer to in Item 16. .

The Items

With the exception of direct quotations, all the words in this book are
mine. However, many of the ideas I discuss came from others. I have
done my best to keep track of who contributed what, but I know I have
included information from sources I now fail to recall, foremost among
them many posters to the Usenet newsgroups comp.lang.c++ and
comp.std.c++.

Many ideas in the C++ community have been developed independently
by many people. In what follows, I note only where I was exposed to
particular ideas, not necessarily where those ideas originated.

Brian Kernighan suggested the use of macros to approximate the syn-
tax of the new C++ casting operators I describe in Item 2.

In [tem 3, my warning about deleting an array of derived class objects
through a base class pointer is based on material in Dan Saks “Got-
chas” talk, which he’s given at several conferences and trade shows.

vi Acknowledgments

In Item 5, the proxy class technique for preventing unwanted applica-
tion of single-argument constructors is based on material in Andrew
Koenig's column in the January 1994 C++ Report.

James Kanze made a posting to comp.lang.c++ on implementing
postfix increment and decrement operators via the corresponding pre-
fix functions; I use his technique in Item 6.

David Cok, writing me about material I covered in Effective C++,
brought to my attention the distinction between operator new and the
new operator that is the crux of Item 8. Even after reading his letter, I
didn’t really understand the distinction, but without his initial prod-
ding, I probably still wouldn’t.

The notion of using destructors to prevent resource leaks (used in Item
9) comes from section 15.3 of Margaret A. Ellis’ and Bjarne Strous-
trup’s The Annotated C++ Reference Manual (see page 285). There the
technique is called resource acquisition is initialization. Tom Cargill
suggested I shift the focus of the approach from resource acquisition
to resource release.

Some of my discussion in Item 11 was inspired by material in Chapter
4 of Taligent's Guide to Designing Programs (Addison-Wesley, 1994).

My description of over-eager memory allocation for the DynArray class
in Item 18 is based on Tom Cargill's article, “A Dynamic vector is
harder than it looks,” in the June 1992 C++ Report. A more sophisti-
cated design for a dynamic array class can be found in Cargill's follow-
up column in the January 1994 C++ Report.

Item 21 was inspired by Brian Kernighan's paper, “An AWK to C++
Translator,” at the 1991 USENIX C++ Conference. His use of over-
loaded operators (sixty-seven of them!) to handle mixed-type arith-
metic operations, though designed to solve a problem unrelated to the
one I explore in Item 21, led me to consider multiple overloadings as a
solution to the problem of temporary creation.

In Item 26, my design of a template class for counting objects is based
on a posting to comp. lang.c++ by Jamshid Afshar.

The idea of a mixin class to keep track of pointers from operator new
(see Item 27) is based on a suggestion by Don Box. Steve Clamage
made the idea practical by explaining how dynamic_cast can be used
to find the beginning of memory for an object.

The discussion of smart pointers in Item 28 is based in part on Steven
Buroff's and Rob Murray’s C++ Oracle column in the October 1993 C++
Report; on Daniel R. Edelson’s classic paper, “Smart Pointers: They're
Smart, but They're Not Pointers,” in the proceedings of the 1992

Acknowledgments vii

USENIX C++ Conference; on section 15.9.1 of Bjarne Stroustrup’s The
Design and Evolution of C++ (see page 285); on Gregory Colvin's “C++
Memory Management” class notes from C/C++ Solutions '95; and on
Cay Horstmann’s column in the March-April 1993 issue of the C++ Re-
port. I developed some of the material myself, though. Really.

In Item 29, the use of a base class to store reference counts and of
smart pointers to manipulate those counts is based on Rob Murray’s
discussions of the same topics in sections 6.3.2 and 7.4.2, respec-
tively, of his C++ Strategies and Tactics (see page 286). The design for
adding reference counting to existing classes follows that presented by
Cay Horstmann in his March-April 1993 column in the C++ Report.

In Item 30, my discussion of lvalue contexts is based on comments in
Dan Saks’ column in the C User’s Journal (now the C/C++ Users Jour-
nal) of January 1993. The observation that non-proxy member func-
tions are unavailable when called through proxies comes from an
unpublished paper by Cay Horstmann.

The use of runtime type information to build vtbl-like arrays of func-
tion pointers (in Item 31) is based on ideas put forward by Bjarne
Stroustrup in postings to comp.lang.c++ and in section 13.8.1 of his
The Design and Evolution of C++ (see page 285).

The material in Item 33 is based on several of my C++ Report columns
in 1994 and 1995. Those columns, in turn, included comments I re-
ceived from Klaus Kreft about how to use dynamic_cast to implement
a virtual operator= that detects arguments of the wrong type.

- Much of the material in Item 34 was motivated by Steve Clamage’s ar-
ticle, “Linking C++ with other languages,” in the May 1992 C++ Re-
port. In that same Item, my treatment of the problems caused by
functions like strdup was motivated by an anonymous reviewer.

The Book

Reviewing draft copies of a book is hard — and vitally important —
work. I am grateful that so many people were willing to invest their
time and energy on my behalf. I am especially grateful to Jill Huchital,
Tim Johnson, Brian Kernighan, Eric Nagler, and Chris Van Wyk, as
they read the book (or large portions of it) more than once. In addition
to these gluttons for punishment, complete drafts of the manuscript
were read by Katrina Avery, Don Box, Steve Burkett, Tom Cargill,
Tony Davis, Carolyn Duby, Bruce Eckel, Read Fleming, Cay Horst-
mann, James Kanze, Russ Paielli, Steve Rosenthal, Robin Rowe, Dan
Saks, Chris Sells, Webb Stacy, Dave Swift, Steve Vinoski, and Fred
Wild. Partial drafts were reviewed by Bob Beauchaine, Gerd Hoeren,

viii Acknowledgments

Jeff Jackson, and Nancy L. Urbano. Each of these reviewers made

comments that greatly improved the accuracy, utility, and presenta-
tion of the material you find here.

Once the book came out, I received corrections and suggestions from
many people: Luis Kida, John Potter, Tim Uttormark, Mike Fulkerson,
Dan Saks, Wolfgang Glunz, Clovis Tondo, Michael Loftus, Liz Hanks, Wil
Evers, Stefan Kuhlins, Jim McCracken, Alan Duchan, John Jacobsma,
Ramesh Nagabushnam, Ed Willink, Kirk Swenson, Jack Reeves, Doug
Schmidt, Tim Buchowski, Paul Chisholm, Andrew Klein, Eric Nagler,
Jeffrey Smith, Sam Bent, Oleg Shteynbuk, Anton Doblmaier, Ulf
Michaelis, Sekhar Muddana, Michael Baker, Yechiel Kimchi, David Pap-
urt, lan Haggard, Robert Schwartz, David Halpin, Graham Mark, David
Barrett, Damian Kanarek, Ron Coutts, Lance Whitesel, Jon Lachelt,
Cheryl Ferguson, Munir Mahmood, Klaus-Georg Adams, David Goh,
Chris Morley, Rainer Baumschlager, Christopher Tavares, Brian Ker-
nighan, Charles Green, Mark Rodgers, Bobby Schmidt, Sivaramakrish-
nan J., Eric Anderson, Phil Brabbin, Feliks Kluzniak, Evan McLean,
Kurt Miller, Niels Dekker, Balog Pal, Dean Stanton, William Mattison,
Chulsu Park, Pankaj Datta, John Newell, Ani Taggu, Christopher
Creutzi, Chris Wineinger, Alexander Bogdanchikov, Michael Tegtmeyer,
Aharon Robbins, Davide Gennaro, Adrian Spermezan, Matthias Hof-
mann, Chang Chen, John Wismar, Mark Symonds, Thomas Kim, and
Ita Ryan. Their suggestions allowed me to improve More Effective C++ in
updated printings (such as this one), and I greatly appreciate their help.

During preparation of this book, I faced many questions about the
emerging ISO/ANSI standard for C++, and I am grateful to Steve

Clamage and Dan Saks for taking the time to respond to my incessant
email queries.

John Max Skaller and Steve Rumsby conspired to get me the HTML for
the draft ANSI C++ standard before it was widely available. Vivian Neou
pointed me to the Netscape WWW browser as a stand-alone HTML
viewer under (16 bit) Microsoft Windows, and I am deeply grateful to the
folks at Netscape Communications for making their fine viewer freely
available on such a pathetic excuse for an operating system.

Bryan Hobbs and Hachemi Zenad generously arranged to get me a
copy of the internal engineering version of the MetaWare C++ compiler
so I could check the code in this book using the latest features of the
language. Cay Horstmann helped me get the compiler up and running
in the very foreign world of DOS and DOS extenders. Borland (now In-
prise) provided a beta copy of their most advanced compiler, and Eric
Nagler and Chris Sells provided invaluable help in testing code for me
on compilers to which I had no access.

Acknowledgments ix

Without the staff at the Corporate and Professional Publishing Divi-
sion of Addison-Wesley, there would be no book, and I am indebted to
Kim Dawley, Lana Langlois, Simone Payment, Marty Rabinowitz,
Pradeepa Siva, John Wait, and the rest of the staff for their encourage-
ment, patience, and help with the production of this work.

Chris Guzikowski helped draft the back cover copy for this book, and
Tim Johnson stole time from his research on low-temperature physics
to critique later versions of that text.

Tom Cargill graciously agreed to make his C++ Report article on excep-
tions (see page 287) available at the Addison-Wesley Internet site.

The People

Kathy Reed was responsible for my introduction to programming;
surely she didn’t deserve to have to put up with a kid like me. Donald
French had faith in my ability to develop and present C++ teaching
materials when I had no track record. He also introduced me to John
Wait, my editor at Addison-Wesley, an act for which I will always be
grateful. The triumvirate at Beaver Ridge — Jayni Besaw, Lorri Fields,

~and Beth McKee — provided untold entertainment on my breaks as I
worked on the book.

My wife, Nancy L. Urbano, put up with me and put up with me and
put up with me as I worked on the book, continued to work on the
book, and kept working on the book. How many times did she hear me
say we'd do something after the book was done? Now the book is
done, and we will do those things. She amazes me. I love her.

Finally, I must acknowledge our puppy, Persephone, whose existence
changed our world forever. Without her, this book would have been
finished both sooner and with less sleep deprivation, but also with
substantially less comic relief.

ST

MCHEF RIS, RS ARG, RECHBLLMARL0 4, HE
MBA LA EEH R P SN RKREBIE S, 8ok £ 10 Pk ik M 5B a1
AT AREIBACHEIWRID, AL 4 e 8 FH C++ AU % Bk) B faTiet (i
) TFIERCH, C++infefbt TIEAR EERER, KM r ETEE 2
(e 5 P o CARIBE), (AT 1453 CAZE S AR M o 7S a6 WA S B 5 R 0 A4
ERHEL THREHETNEREF. CH+HEFREBAMMMN, S twiEs
PERFPERY 5K, AR RRD R R AW S Bk, AT C++RB AR R 19 T B AISR e &
FE. BARME, B EILP AT LLHBRAEIR £ B i b 40 S ARG B,

HTCHIESCARBIFARIMEEHLSR A RE L, RINEEWEELEE
T2, FE1990 4, AMAZMECHR 2, WEIT1992 48, {107 22 4nikk fn
fifERAE. 4K, C++EFRNHRE T E /MG : iS4 el HE Bk
RITEE? MPTEA & R IERMEFR 5 MR AT TR S R ARER? i EliE s
REFRM T 2 IhRE?

FEAA PR B 25X L A A K At 1 2 1 it 2 (9) B

A 1 R PR AR T RO SE B E A I C++ik ik, B, 47 AW IERMA 5 E 471
RIE, RAESHERRAE D@L, Erk, BENES, EA0sH TIESHE,
R E R, ERAIESHRR TESELS. ESWERSER. E4158 kiR
FRC++iR . B2, BRI SSILH B AP A8k i

ABREWRIS A KK B—AFEREBEE T Cr+ R B2 18 LY
BERR., KB RKUESHEHOHRX I, B0 50BN R T i
TEAMGE, METEBEGHBEREMNLTFR, UREHLBE TIREES
BRIZTT 5.

HEEFGR BT A LRI, — B RHKRERENIE S, LHA RS &
AR, B, FKR~FRISETETRE . B Ih— 550 i@k 4n
& ais MBS QRELUEIEmRN Bir. B, Fk25~F%314k anfT2
R R RN B, ANFTARYE — AL LR RE B QI RIS B aM”
W, mfelE “EREEHT, F%. SARMbEAKITRE S ZNEE, &%
16~ ATHETIHRBER, FR—AHEEMFRTHEORM AT/, SIEHER T
BEATMAER., £ABS, R85 200 €A B0 AC++, AR Bk £ 5
CH+EMINE SRR, EABH AREAEREBHAL,

R SRk B TR iR AR Z AT R R SRR C++ . X BBERE TR,
AR B, BRI R, B EER S BB R AR,
(BRI YERR—IBESER, FL LB AL ARREICHFHER, e
4 H LRI .

ABATRRIC++

A5 rp R HY C -+ 19984 Hl BiAn i & R & E LHIC+HEH . X IR E B AT HE(E
T RF-L %% 5 M A X — B Sk, LD, BRI SR
MV R %R RN, [EBLIE LT FTE ik B AR TR R, BEER T R,
(B3 B R BRF 5k 0~ 43k 15, XA &SN EFETIHRRE . MRIRFLAGHZF
R REILE, BEER, XHARLSEMEREIALBEARINE. #—PWE,
BME R L A T R R, WAL~ K15, B AXERFHEN
T AR 0L T VRER T TR R U8

BN, UEREERASEEE - ESHESNTEMEE, HARRIEZE
bk DA S H TSR R0, LR HEATEANIFRASE ., HimlkE
BRI A E RN, RMFEEHMATIE, RERERE T TIENKE,
T B A A e, FTOA M RE % S fC AR R — Bk, AR LABIR—B
2 Ay, R R A] {5 B A A 1 SR BEAULYR T Sk O G 38 2% R I RRIIE S AR I
e R e i — e E B 5 AR HCh BT R IR S R bR, AR A TRIES

7 [450 1% 28 S A CH+ARiE 0 R R, BB R IR B /D FE PR P i 13 2%
i TAERE. XA TR TERKBTEN AHEAIEST RRER
bRl BA B TR A CHB GMIEREAR (Blm, RAE—F ik
LR EE SR) . RIE SRS S EABL (GEilbugSiR g, S5k
a2, MEHEMEINAESE, CHiREMRZIA%, TEARRMEMATER
ol TR R . AR EAL A LS, H M IRAY B AR A 7 vl A RIS,
B A R AR N E—LFLA Z R R IRk Z R .

VRIEEA B BRI FA VR T REA KB RAICHH3E , FH E AR B H LR TR
2y, iR TN, BRI ER R LR, AR 5 R R
R HAELZ .

% A R bool A, HIE hEBFtrueskfalse, AMRIRIIGHIES A
FLHbool, HRMEIGR. H—REMLFHE:

enum bool { false, true }; .

KRR IR R R — A boolib Aint M IHETER, BRARNEN
FeistRerr (Bi==. <. >=%) {BR{EEint, SR SHTREHTAHRBAIB
HARIARHE

xiv

void f(int);
void f (bool);

int x, y;

f(x <y); // AMEEf(int), HLNiZIEHE (bool)

LR RADIRE R A HIE X Fibool KR 4R iR B0, X A i lboo 1 {5
NATRES S EAEAIT A R %R,

H—MERS AR EHAtypedef & Lbool, HLAHEMNRF Rtruefifalse;

typedef int bool;
const bool false = 0;

const bool true = 1;

X RFEGRIC/ICH+HE FRA, FF B 2468 A Fh s R AR w3 —
X FFbool KA PR RN, HATAR S RARDE ., AR, 243t@ Bt 5 &t
kX srboolflint, HZ, XFMELT A EHE, HEEEEA RITLHTE
HIAR—Ff

FEAFERLBE N/ M E, IR EFstatic_cast, const_cast,
dynamic_castlifreinterpret_cast, ARIRABBIXLEETIRE, HBR
FAR2HFHIBRLHAE . BOIRUXELFTRRACRAEHERIBSE L, HELKEE
4F, FEXAEASH, (EAEEYFEERAT AR ER, FREDE B X S KAk i i
RIRIERF .

C+H+lAAUNRIEE S, EXEA — e, REHTRE, RMEER
PrfEstringZOR R F AN char 84, HHBEIRIX 4., stringdRHR
bbE Fchar* - RF e, wE G /R % % R NS E M, kb, fn
RWH T %, stringMHRBAKRESEKENFHREBRGE (WL%K fkE10), —4
AERI LI stringkIBRFAT LA S Hchar* S MW BRiHEBE, KFEEH
(B2 W &K%29, MBERMAMENX —AM) . MBERF LT iMEstring2k T H, 4
RATLUERARl Fstringfy2k, BiERE, FHAJLPERMAEEL A
char*ZE4f

AT f5 R A W REBRL & (3 A ok B AR RO IB S5 4 . X K BB R B A%
#EHi A & (Standard Template Library, BISTL, L4%%35). STLA & bitsets,
vectors, lists, queues, stacks, maps, setsUAK & ZHIATE, RiZHES%E X tehnif:
I IEER, MABRFAEBFRE CHE - MEHRORE ., RHRIER LIS
- AHASTL, EAZERERAER B, BifSGI, RATLAMSGIFSTL Webif /4
(http://www.sgi.com/tech/stl/) T#H—@ %R N, ERLATGTF L 5RIFRHE,

MARREBEFEA - NEEEMEEMEREHONEFLERIHE, TRAE
(UXEAHSTL “brfe” stiEmERAE. R, WERESFH —-ASTLAGRM LGRS

R E ORI Z m ST, P EREMERASTL, BicHREBEAD? STL (LA
Bbrife BRI R) hA KBRER S AR,

AR GRIE

A, (RS RIRBIARN, MRIEAFAK, MRETRIGAHR,
HaWTb LAV . 640K Bk 2 BT, Bl 4% 6l IR A= 4 1 2 KRy
Hi kR R R TIRAER Z IR R, B, CATR—IER B KKK B RES
A .

XFhFRIETIRIE (Effective C++) SBIR (FRF2UR) FEMAMLEMRK, (B
BILAE T LATAE K 2 B C++ SRR H R il AR A2 248 1) B R UK AR Wi Sk 2k, TR
LB A, FEXKER R, WRE (Flincameobject) #ihn LPAKTRMAEL (H
#nSpacesShip) MIFKMAR .

HARFET RS AEARMARPEE, 5RlRBELBMIPERLT,
fREr G AR SR R R A UARAIEER ., HAEFRIN b ELhrds 9 R A%
RE., THEZET LiREBREHHRSR—%6 R

GameObject *pgo = // pgolIEAZKEI R GameObject ™,

new SpaceShip; // #EZAIESpaceShip*
Asteroid *pa = new Asteroid; // paliE& A RAsteroid*,
/! EhELK b RAsteroid*

pgo = pa; // poofEALREMARE (FFHER) GameObject*,
/! BHAFKRBAERK TAsteroid*
GameObject& rgo = *pa; // rgofyEA AL GameObject,

/! FHEFEBEAsteroid

X FhRTE T REKR—F M RLE . pgok—/~{iHGameObjectyif
&, pak—A{5MAsteroidfIig4t, rgok—/{8MGameObjectI5IH. il
H LA RIS R RS RIS A 4.

RENERNFEAN K LFHELLhsFirhs, BB “left-hand side” #n
“right-hand side” W45, A THEBXEAFHRENELS, ZE-1THATFRSAEEE

xvi

0
class Rational { ... };
MBERME AT —HRational MRAIERL, "TLLKHFBT .
bool operator==(const Rational& lhs, const Rational& rhs);
XiERAEB S Han T BRI AR

Rational rl, r2;

i€ (xrl == r2) ...

fExtoperator==RiHAH, r1HIATF “==" BENHHEHBEE 1hs, Hir2l
HELE “==" WAMFHHEHES|rhs,

el b B4 4 : ctorF “constructor”, dtorkim “destructor”, RTTI
Ml 3% 5% C++%F “runtime type identification” B EE (£ ETF3XH,
dynamic_cast&—/ 5 s iE A).

2 sy BN T A B Bl , A TIEA AR R, CAIC+ &R AT £ M AF
RS, BECHH NTEIHE “HHE” BYRTREAUOGRNAE . Boh 2 R AR,
C++£2 A Z AR A R s, Wikl dk B SRS o RAR. fla, HELITRE.

class Widget { ... }; /1 A% (BRALHAER)

Widget *pw = new Widget; // ZhFHEL—/-WidgetX

/7 {Bi%pwh AR ER

XEBRBAMBANTG, B hpwismiIwidget M RMRBMER, mH, R
Widget#yis BB T “ARfEWidget RSB BR” HMNTRE (Fian,
SCHREATE . EER. WO RBIEESISE), Isix eI E N AR E
BT . kT RIEECH NAE R A R PR IR, fEAT S, BolH BT

IRBARLTEXABHBERMREL N R, XHAREARAERNE. e,
IR NI R R CH+II— A BB, AT, BT ATRE D RBE T RNk
RN R LR E 7. M EEEAEX, FkRIRBENE, BRIAEE -T2
BTN b, MIREAB BB —ANENB R, HABRERINAILE
Fhinline R ER, REFEAETNEZEK SHRELFHENETT K.

B — B C++iE M D2 AR RS T, SRR B BB S B8R, B
h R LA, AR LA e SR O e M BT IR T, T LR AR £E
AR, RELNBEFFOHEE, FHEPRARECNOIESEE. MRS
(i F W FERO A, (B it B MR, BEEET, AT ABRER
PR, RES HEESXREFNFERSE.

xvii

FBHAENE - (Client) RIFFEARKRESHRBIA (BFR) Sty GEE
KA. Blan, RKREME T —/Datet (HTFHRFER. BFHRE), (£
(EFIZERI AR IRAIZE P, o, (EEH Toate MRS Wi th R IRIZ /.
FRMEE, Lhl, FPAEREBSHEZHE! EERBEA, mBELEE AERR
WMERKME, XGRS EER? REEARLOFUELLE FHH FiFt—2, @%
XA E F BT, EARFBRORGSRUE P hRD, ZRE Ew, i
XA R AE R, AOMFICELMEZE—T, RYERTAED
MERIRBERBD? MRE, RBERECHWE . FLILLE P ERE, @5 it
ik B ERL,

=TT AR B bR MO A B BT T P A O 2 s R B, TRAR B T i Ao AR,
XA K H L Z R MO ZE IR INX 5. Bil4n, anfArray— MK R B THIK
B, HATRER LR AR E L BIFR AArray, REArray<T>ARIZEWEER
HF. KU, mRswapf—MEZRBMESKTHRBER, FHRATFEL L swapift
swap<T>RFRHLG ., AT P IEFER LS I T X FRICEABIEN, REERD
Btk LB A AR 24

H&bug, WELEIN. FKENEH

RORDEXAERHEH, TiRMdF, FH, ERMECLERUENSL. 0
RORKIEFFRIEE IR, TERERMEN., B L0, HRG @A, WSEME
b HEEY, HEIFR. S HEARBEEONNTLLE, R REEANEIRNE —
Mk EE, BEREEROKRLIMAFTBOBANEES . R RE Kbk E i,
FEAEYG

B EW RAECHH A B RENIE S 4. R IREFIE S B HE
BE5#o®E, BREERES. HHRIESHE. RS, HIELUR bughR &bl 2 H L
T AL

Scott Meyers

c/o Editor-in-Chief, Corporate and Professional Publishing

Addison-Wesley Publishing Company

1 Jacob Way

Reading, MA 01867

U.S. A.

H3E, PRUFTLLR 2% B F-lE - E mec++@awl.com,

BREE - AR BEREBILCRIEITSIR, KhaEHIREBE, XFRiE
DAREIAREHR . XAFIZR, EFREMMEXEL, TAEBHE (http:/www.awl.

oo

com/cp/mec++.html) 3R%F, YR AT LA SE ot BE &4 FTP M ftp.awl.com ffjcp/mec++ H b
P, EIRA B XM EITAIE, Bk, HRl R ERE, RS
F—BEIR.

R A M R A MO S BRI B, A% EIMA AR AESIR, 16
¥ [l http://www.aristeia.com/MailingList/index_frames.html,

PRIEA 3, A LRIBR 2!

