UML Y5 jiif) %F 5 85 i1 5 B0 A

T UMLE

Web) HIF

BuiLDING WEB
APPLICATIONS WITH UML

[wbnnucu :

| QLR
A RUMBAUGH

UML 5 #] 3 R % AT R A

Jim Conallen %W

M4 5 % B i
i st

mE &

UML B0 AT RS bR AE RS 5 o Web I TR 8RS0 18 T 1. A58 360 N
KA T Web B LA AEA, 35 HTTP. HTML., XML, ®5, HEAE, ZhA% . oatEss, @
T SE A T Web B B RELA A, UML 1 FLIAR T, R AR 4K e . @ikt Agiidit.
SEEE . AP AEMEWT, Uk .

AADIE O Web BPEIH 2688 . 08T Bh . BT A AR R B . .

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Building Web Applications with UML,I* Edition by Jim Conallen,
Copyright©2000

ISBN 0-201-61577-0

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
AR T e N RS AR S OGP R R0 1R AT BUX Ao (] 6 S) Bk 1T .

ARG AT Pearson Education(35 A4: HUH HRRAE AN BOE hbR%s . A& AR
K. 01-2003-2548

B RR 4R B (CIP) 3R

Jil UML 44 Web 1 [F¢)¥=Building Web Applications with UML/ (35) E}4{& (Conallen,J.) .
—EIAR. —dbat: BEFEHRGH, 2003

ISBN 7-03-011402-7

AL LA NLdmxd % s, UML—RFdb—%3C IV.TP312

I A B CIP A% (2003) 55 030823 45

RR| G4k BRI/ TIERE: BRI
WAEEPH]: SARK/HEHME: AFALTFEETE
4 % % ko8 IR
A5 SRR 17165

MU 413100717
http:// www.sciencep.com

24 ® & 5 Elk
FREMRAERIT BB IR
*
2003465 A% — ML JEA: 787X960 1/16
2003 4E 5 HEE—WKEDR ENgk: 193/4
% 1—2 000 ‘7. 377 000
E#r:35.00 7T
(CUE B3R R 8, Bt SRS)

FEES

Bl ATLASE 4 B A B i A AR B r 2 T R, LN AT I AE AT R, 58
IRTTRLHLAR R] T Bk B, RS A, ORISR A O B R
R, 20 tH42 60 FEACAIERAFFEHLEE AN 175 B AR B4 B T ALY i 8V (AT &
R, FREETFE FEMN 60 FERZ TAEMEF T TESIT A, LS 70
ARSI R AT i (80 AR B SRS RIF R 51k, BB T) X G R T 1k

T[] X 5 BRI & i R AE S5 M AL T R FE R R S G R & VG R B 5 R Jie
kR, EEsmsds. B, 4ok, HEFEALARYREIR, RUFRAT A E b
FOR R AR R A SRR R, TEAR KR E G2 A% T el T X REAR b T
BFRHES ., VUG XA & R AR B e (d, 2R 1 1 [X S e o B it

20 k42 80 AR 90 4EARw), Jofa B T L FHRm X i bt ik, Hr,
Booch, Coad/Yourdon , OMT A/l Jacobson 5 /5 4531 1 1 o] 34 S A4 H & B00) 1z AT .
B Fh O AR 22 1) 6 R AIBE S B AN S AR R, BMEAE AR, & AHOR ERFRoRTE
AR it 90 AR IERIRZ B E, AT R EIA R) 7 B A 2
G, A ARG MO, Bl RIFREEH TR G FUE S IFE &R Y
FMFERARRAZES, ARTH SRR SUME. EXFMER T, S—@8hEs
(UML) T 90 FEACH AN IZ A= .

UML ()74 B AN TF =0T [X R /728 %% G. Booch. J. Rumbaugh FI L
Jacobson HIiE 1 AAE. TR bl TREA I EBES, it UML MRS
IR RIEFERBE F R T DA —Rh s, I BARBE 1 At P X il & i — 2y e
FIBLE . UML AR B & B RGAR R R AL R AL S, (EATMRI R R,
SEELB— BRI AR . 1997 4E 11 F UML % OMG 2142 1E RN AR HE R S
F ., JFTERE)S A LA R Rk b & JR R S I EERE [BRARIE

UML 7EFE AN e SOy TR T KR TR, AT ARG T 18) X 5 07 2
AR R DA A R By = SOHERRE S, L SRR Mt e &, ik
iz X SR SOk T & . UML WA —Fa il 5 s S i B, (R & b i —2k
A E L. REBIENEFENMERCRA VT2, (B ey m e 35 4
S DA) 25 R A8 12 U UM

M UML B RIARRAT G, 28] TiHEN L R EE, OMG R HIRZ v
B SR EHE BTS2 R AL PRAERAL, i Eda Bokk 2P . B8 2

i A UML #3 Web i i 42 /5

T AR AN 2 R) F A e, A RS RS 15 5 ARG . i AsUSERT &
g, ARG Aot EJUEAHE AR R TR, BRI R
AL BT FRE JE FLe AU R B PLER A, el PR R, Bl
it b A PARE L Al b SR B R A T, S

16 UML BESE & A LA, SEAABIE 1T — S MRAS P Beba RS i B 4
Ay UML2.0 MUASKE X UML (1 S — K dER A . Bk UML $ & 18 5 Kk ik
AP . KRR SR SR R i TR R S A B S A

AN T 5 1) 6 R A R UML 45 5600 12 A5, OB 1 1 i) X 52 £ A fi v
K FE RS UL K UML Wi i roe s Horh b Kok ifi i) 4 G A S i 7 55 S B A0 A7 iX
FEILA . A R RGEAH Rkt) FEHE Tl R A S . #Asit.
KAXR BhABT . R DL R A& R 254 S 3 TUAF A 1 1) R 5 5 A 49088, o 14038) L
WHIRE Bk (B UML TS R) F8 040 1 i TR B . 2br
FrEe . itBrBeh HSCEIRI A A i SR CRguUHB s) /4 1 fe ity A
U S B A S AT R R AR s CUML (a6 & G255 KA) DUl & 25 s iy 16 i)
X2 B HITELY () i

W K UML {E45 0 S0 1)z A X FEJ LA . (UML SERF R A) ihie 1T 138
i RGEH AT 24 UML T TR AR ;s (O UML M Web 1 HIRRF) ihig 1iz
F UML #17 Web W FH AT R BAREAR S s CRImIAT S RGN, B i
P T) A28 178 UML W T) 4 42 0 4l e oy 4R 0 i B T (o4,
W0F . HEZLS UML) HE T Wifaliz F UML X i i %F 52 (108 B R ——H - HE 404
AR J s . (UML Y Visual Basic W R &) FEEHE T M UML i3
Visual Basic 2/) 51 55 il 55f 5 1:

AT RABLE AR AWIA S (COM T 0z) Ml (ATL HARNHE) | 3%
ARV T 1 1] % 42 B A B BT AR——COM Fil ATL AR A9 fd FH 4% 5 S AR N HE

A —A {Executable UML £ R NH:) , XABA 7ol i UML f9RE S H
FEHAR, AR A 50 E R ARG Y [sh A s o nT RE, AR R T K
(1) —Flopr A

B XE AN KA LS TR A I A B iR SR, [
AL AT AR (P A T TR A | BT R SR FR R AR TIR AN 4R, e NBE LW R
F T RHYSE. oA, R AERR 2R

AT, Frm AT AN IR R B S AR I A L ORI | 2 2 P g

kT RFHHMA Flok

Preface

Late in 1996, I downloaded the preview edition of Microsoft’s Active Server Pages. It was
my first taste of what could be done on the Web. Even then I could see the potential for
sophisticated Web applications. I began to investigate alternative architectures: CGI (Com-
mon Gateway Interface) and Allaire’s Cold Fusion. Even before then, I had started tinker-
ing with the Java beta and later bought Symantec’s Café to experiment with this new
language.

At that time, I was an independent consultant working for AT&T in New Jersey. The
project had nothing to do with the Web, so my only opportunity to experiment with this
technology was during the evenings and whatever spare time I could find. In the end, it
was all worth it. I learned a lot and was prepared for the coming onslaught and frenzy of
Web application development.

My first opportunity to build a real Web application came at the request of a friend
whose father owned a live cut rose wholesale and retail company, Hortico Nurseries Inc.
Hortico was interested opening up a retail sales front on the newly emerging Internet. To-
gether with a mutual friend, Jeff Wilkinson, we built our first production e-commerce site.
The site was simple. It allowed customers to browse and to search a database of more than
1,400 varieties of roses and even to place orders. At first, the site didn’t generate as many
orders as we had hoped, but it did expose Hortico to a new market and certainly helped its
sales grow in other ways. To the best of our knowledge, Hortico was the first Web site to
make a comprehensive catalog of rose varieties and pictures available to the Internet com-
munity. Jeff has pretty much taken over the management of the site, and I help when I can.
He has gone on to win awards for Web site design for some of his other projects, and I
moved on to other contracts.

My first professional contract dealing with Web applications was with a small start-
up company in the healthcare business. This experience got me even more involved with

Preface

the subtleties of building Active Server Pages (ASP) applications, especially with the is-
sues of managing server-side resources and transaction management in a Web application
environment. I learned a lot about the use of client-side scripting, applets, and ActiveX
controls. I also learned a valuable lesson about testing applications: Client machines with
different operating systems can behave differently with the exact same HTML, Java, and
browser code. All of these experiences have driven me even more to a belief that Web ap-
plications need to be modeled and built just like any other complex software system. In
the years that followed, I continued to experiment with the latest Web technologies and
consulted with other companies with Web-related issues.

All throughout my Web application experiences, I tried to practice my object-oriented
skills in the area of Web application development. I had little problem applying use case
analysis, and it wasn’t until I started creating analysis and design models that I realized
that things were going to get difficult. When creating a Web application, my conceptual
focus was always on the Web page. My idea of a model kept revolving around the concept
of a site map. I knew that the navigation paths throughout the system were incredibly im-
portant to the understanding of the application and that any model of the system would
have to include them.

My earliest attempts at modeling Web applications started with Rumbaugh’s OMT
(Object Modeling Technique); later, when UML version 0.8 was publicly released, I be-
gan to apply it. I knew that for any modeling technique to be useful, it needed to both cap-
ture the relevant semantics of Web-specific elements, such as Web pages and hyperlinks
and their relations to the back-end elements of the system—middle tier objects and data-
bases. At the time, I found both OMT and UML inadequate to express the things I thought
were important in a Web application.

Being a somewhat successful object practitioner and engineer, I jumped to the con-
clusion that a whole new development methodology and notation were needed. After all,
if the existing methods and notation didn't have what I needed, the obvious solution was
to invent new ones. This, of course, is a trap that many of us in the software industry fall
into. In my free time, I started to draft new graphical and semantic ways to represent Web
application architectures. Proud of my work, I began showing it to two of my colleagues:
Joe Befumo and Gerald Ruldolph, both-experienced object practitioners. Their immediate
reaction was: Why? I tried to explain the issues involved with Web application develop-
ment and the need for visually expressing their designs. Yet everyone I spoke with contin-
ued to think that developing a new method and notation was a little overkill.

I started to rethink what I was doing. I wasn’t so arrogant to think that I was still right
and everyone else wrong. I had more homework to do. I reexamined my original needs: to
express Web application designs at the appropriate level of abstraction and detail, and most
important, as a part of the rest of the system’s design. Since UML was taking the industry
by storm, I realized that anything I did would have to work with UML.

So I went back to the UML. By now, it was in version 0.91, and a new concept was
included: stereotypes. At first, [was clueless to what a stereotype was. The UML specifica-
tion is not the easiest reading, after all. It was long and difficult, but I knew that any success
in the area of modeling Web applications had to come from this direction. Eventually, I

Preface

X1

started to understand what was meant by stereotyping and the other extension mechanisms:
tagged values and constraints. I was finally starting to see light at the end of the tunnel.

I now had a mechanism with which I could introduce new semantics into the UML
grammar without disturbing the existing semantics. I always knew that the key was to pro-
vide a consistent and coherent way to model Web-specific elements at the right level of
abstraction with the models of the rest of the system. The UML extension mechanism pro-
vided me with the framework to do so.

The next step was to start defining the extension by creating stereotypes, tagged val-
ues, and constraints. For me, the ability to use custom icons in diagrams with stereotyped
elements went a long way to ease my concern for intuitive diagrams; also, Rational Rose,
my visual modeling tool of choice,' had just introduced a way to use one’s own stereo-
types in Rose models. I quickly created a set of icons for Web page abstractions. I tried to
make them consistent, mostly rectangular with the stereotype indication in the upper-left
corner. I used filled-in dog ears? to represent pages and unfilled dog ears to denote compo-
nents. Icons without any dog ears typically represented contained classes, which cannot
be requested directly by a Web browser. The icon for Web page components is similar to
the icon used by the three amigos—Grady Booch, James Rumbaugh, and Ivar Jacobson—
in their book, The Unified Modeling Language User Guide (Addison Wesley Longman, 1999).

Looking back, I remember spending less than a day to draw up the icons. I didn’t spend
much time on it then, since I always believed that eventually someone with a little more
experience would design some meaningful ones. In the almost two years since then, they
have remained essentially the same. I am surprised that I have received absolutely no com-
ments on the style of the icons from the hundred or more people who have been using them.
I think that for this version of the extension, the style of icons is going to stick.

As the extension evolved and a lot of the details and inconsistencies were getting cor-
rected, I always kept an eye out for code-generation possibilities. In my mind, the model-
ing technique could be validated if it were possible, in theory only, to unambiguously
generate and reverse engineer code. Since most of my experience was with Microsoft Ac-
tive Server Pages, I began creating Rational Rose scripts to forward engineer ASP code.
I've tailored the scripts to create Java Server Pages code also; from a code structure point
of view the two are very similar.

From that point, things proceeded at a tremendous rate. I published a white paper on
the Internet and presented the topic at the 1998 Rational User’s Conference in Orlando,
Florida. Grady Booch took an interest in the work and encouraged me. Addison Wesley
Longman asked whether I was interested in expanding the topic into a book. If I had only
known how difficult was going to be to write, I'm not sure that I would have agreed. I fol-
lowed the original white paper with a stream of other articles for both online and print
publications and started to get a regular stream of e-mail comments on the extension.

1. All of the sample models used in this effort were developed with Rational Rose. I had worked
with the Rose tools for many years prior to this and have recently given up independent consult-
ing to join the Rational team. (My praise of the Rose tool, however, would have been made even
if I were not a current Rational employee.)

2. A dog ear is the slang term for a bent or folded corner of paper.

xii Preface

By the time this book hits the streets, I will have introduced the topic at five professional
conferences and written at least a dozen articles and white papers on the topic. Ideally, this
book will continue to propel the recognition that Web application development is a serious
topic and one from which we can learn and adopt the successful practices of the past.

Acknowledgments

Authoring a book has always been a dream of mine,.and like most realized dreams, they are
never done alone. This book is more than an essay of my experiences with object-oriented
web application development; rather, it is the joined effort of a number of individuals and
the sacrifices of many close to me.

As a software engineer I never needed to understand the publishing industry. Publish-
ing a book is certainly more than just writing words, as I found out. The team at Addison
Wesley Longman—]J. Carter Shanklin, Krysia Bebick, and Kristin Erickson—helped me
through this process, and I thank them dearly for all their work, encouragement, and gentle
reminders of impending deadlines.

This book has been reviewed by a number of people, all of whom I graciously thank
for their time, effort, and honesty. Going through those reviews was a humbling experience,
yet it was essential in ensuring that this book would be readable and interesting. My thanks
go to Ron Lusk, Compaq Computer Corporation, Craig Olague, Grady Booch, Ben P. Ansell,
Neil Williams, and Jeffrey Hammond, Rational Software.

I must give extra thanks to Ben Ansell who early on found some of my-initial material
and worked with me to improve it. Extra thanks also goes to Grady Booch who, after find-
ing my obscure white paper, was kind enough to send a short e-mail message to me saying
it was a “‘great paper.” That little note of encouragement helped me put aside nagging fears
that what I was doing was wrong and inappropriate. ,

The writing of this book took much more time that I had originally thought. During
the first few weeks of writing, my wife and I welcomed our second child into this world. I
can remember many hours writing and working the material in this book when I really just
wanted to be cuddling and playing with my two children. There were moments when things
got difficult and frustrations high, but through it all I had constant support from Brenda,
my wife, without which I would have ever been able to complete this book.

Jim Conallen
August 1999

Foreword

As Jim points out, there's a big difference between building a simple web site and building
a web application: the former is relatively static, but the latter is much more dynamic, full
of rich content and capable of changing the state of the business as a result of user interac-
tion. A web site is sufficient if all you want to do is publish information, but you really
need the scope of a web application for anything else, such as e-business, collaborative
content, and distributed communities on the web.

Building a web site is relatively easy, because the barriers to entry are low and devel-
opment is largely uncomplicated. Building a web application, however, is hard work. Be-
cause of the rich content and its importance to the business, you'll have to deal with many
different stakeholders, ranging from graphic artists to code warriors to lawyers. Addition-
ally, you'll have to architect your system for continuous change, because a web applica-
tion that is stagnant is a web application that is dead. If you are webifying an existing client/
server system, you'll have to cope with the challenge of integrating legacy. Finally, you'll
have to prepare yourself for periods of peak interaction; a system that fails at the most critical
moments is one that will seriously harm the business.

You'll find lots of good books that explain how to build web sites. There are also many
good books that teach you the details of a specific web technology, such as HTML, XML,
EJB, SSL, CGI, TCP/IP, ASP, JSP, and lots of other acronym-enabled things. However,
this book is different, for it tells you how to build whole web applications upon these dis-
parate technologies. Building a quality web application in a predictable and repeatable
fashion is a team sport, and requires the use of proven development practices such as itera-
tive development, a focus on architecture, and visual modeling. Jim's book addresses all of
these practices, and more.

Xiii

Xiv Foreword

Jim's an experienced web developer, and I'm delighted that he's found this medium to
share his experience. I think you'll be delighted as well.

Grady Booch
Chief Scientist
Rational Software Corporation

Contents

Preface xiii
Foreword xvii

Part One Introduction and Summary of Web-Related
Technologies 1

Chapter 1 Introduction 3

What Is This Book? 3
Who Should Read This Book? 4
Book Organization 5

Chapter 2 Web Application Basics 9

HTTP 10
HTML 12
Anchors 15
Forms 16
Frames 18

Web Applications 19
Session Management 20
Enabling Technologies 21
Chapter Summary 24
Chapter 3 Dynamic Clients 25

Document Object Model 26

iii

iv

Contents

Chapter 4

Chapter 5

Scripting 29

JavaScript Objects 30
Custom JavaScript Objects 31
Events 33

Java Applets and Beans 36
ActiveX/COM 38

Summary 39

Chapter Summary 41

Beyond HTTP and HTML 43
Distributed Objects 43

RMI 46

CORBA 49

DCOM 51
XML 54

Chapter Summary 60

Security 61

Types of Security Risks 62
Technical Risk 63
Server-Side Risks 67
Client-Side Risks 68
Security Strategies 74

Encryption 75

Best Practices 76
Chapter Summary 78

Part Two Building Web Applications 79

Chapter 6

The Process .81

The Model 85
Workflows 86
Project Management 86
Requirements Gathering 89
Analysis 89
Design 89
Implementation 90
Test 90
Deployment 91
Configuration and Change Management
Risk 92
Iteration 93
Chapter Summary 95

91

Contents

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Defining the Architecture 97

Examining the Use Cases 98
Web Application Architecture Patterns 99
Thin Web Client 101
Thick Web Client 105
Dynamics 107
Web Delivery 109
Chapter Summary 113

Requirements and Use Cases 115

Requirements 115
Gathering Requirements 117
Guidelines for Writing Good Requirements 119
Prioritization 120
Use Cases 121
The Use Case Model 125
Sequence Diagrams 128
Use Case Analysis 130
Chapter Summary 133

Analysis 135

Iteration 136

Packages 137

Defining the Top-Level Model 138

Analysis 140
Sequence Diagrams 142
Collaboration Diagrams 144
Activity Diagrams 145

Chapter Summary 146

Design 147

UML Extension for Web Applications 150
Designing Web Applications 150
Partitioning Objects for Thick Web Client Web Applications
Partitioning Objects for Web Delivery Web Applications
Elaborating the Design with Sequence Diagrams 152
Thin Web Client Design 152
Server Pages 154

Links 158
Forms 160
Frames 160

Thick Web Client Design 161
Web Delivery Design 164

151
151

vi

Contents

Chapter 11

Appendices

Appendix A

Appendix B

Appendix C

DCOM 166

RMI/IIOP 168

Guidelines for Web Application Design 170
Chapter Summary 171

Implementation 173

Server Pages 178
Client Pages 186
Links 208
Frames 209
Client-Side Objects 213
Server Side Includes 216
Chapter Summary 218

219

Web Application Extension for UML 221

Description 221
Prerequisite Extensions 221
Stereotypes 222
Well-Formedness Rules 230
Comments 231

An E-Commerce Use Case Example—Use Case
Specification: Browse Catalog 233

1. Browse Catalog 233
1.1 Goal 233
1.2 Brief Description 233
2. Flow of Events 234
2.1 Basic Flow . 234
2.2 Alternative Flows 234
3. Preconditions 235
3.1 Internet Access 235 ,
3.2 HTML 3.2-Compliant Browser 235
4. Extension Points 235
4.1 Add Item to Shopping Cart 235
4.2 Checkout Shopping Cart 235

Glossary ASP Application Sample Model 237

Vision Statement 237
Top-Level Use Case View 238
Analysis Model: Main Diagram 239

Contents vii

Analysis Model: Use Case Sequence Diagrams 240
Browse Glossary Main Sequence Diagram 240
Search Glossary Main Sequence Diagram 241
Edit Glossary Sequence Diagram for Entry Use Case 242
Design Model 243
Top-Level Class Diagram 243
Use Case Realizations 243
Top-Level Logical View 246
Server Components Package: Main Class Diagram 246
Web Pages Package 247
Component View 250
Source Code (after implementation) 252
GlossaryHome.htm 252
GetEntriés.asp 253
ProcessSearch.asp 257
EditEntry.asp 260
UpdateEntry.asp 262
string-util.asp 264
ErrorMsg.asp 265
global.asa 266

Appendix D Roses Alive! Project Plan Outline 269

Iteration 1: Getting Started 269

Iteration 2: Elaboration of the Vision 270
Iteration 3: Realizing Use Cases 271

Iteration 4: First Real Executables 272

Iteration 5: The System Comes to Life 272
Iteration 5: The System Continues to Evolve 273
Iteration 5-6: Beta Releases and Updates 273
Iteration 7: Initial System Release 274

Appendix E Sample Rational Rose Scripts 275

ASPTool 275
Make ASPComponents 278

Index 287

Part One

Introduction and Summary of
Web-Related Technologies

