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Preface

Late in 1996, I downloaded the preview edition of Microsoft’s Active Server Pages. It was
my first taste of what could be done on the Web. Even then I could see the potential for
sophisticated Web applications. I began to investigate alternative architectures: CGI (Com-
mon Gateway Interface) and Allaire’s Cold Fusion. Even before then, I had started tinker-
ing with the Java beta and later bought Symantec’s Café to experiment with this new
language.

At that time, I was an independent consultant working for AT&T in New Jersey. The
project had nothing to do with the Web, so my only opportunity to experiment with this
technology was during the evenings and whatever spare time I could find. In the end, it
was all worth it. I learned a lot and was prepared for the coming onslaught and frenzy of
Web application development.

My first opportunity to build a real Web application came at the request of a friend
whose father owned a live cut rose wholesale and retail company, Hortico Nurseries Inc.
Hortico was interested opening up a retail sales front on the newly emerging Internet. To-
gether with a mutual friend, Jeff Wilkinson, we built our first production e-commerce site.
The site was simple. It allowed customers to browse and to search a database of more than
1,400 varieties of roses and even to place orders. At first, the site didn’t generate as many
orders as we had hoped, but it did expose Hortico to a new market and certainly helped its
sales grow in other ways. To the best of our knowledge, Hortico was the first Web site to
make a comprehensive catalog of rose varieties and pictures available to the Internet com-
munity. Jeff has pretty much taken over the management of the site, and I help when I can.
He has gone on to win awards for Web site design for some of his other projects, and I
moved on to other contracts.

My first professional contract dealing with Web applications was with a small start-
up company in the healthcare business. This experience got me even more involved with
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the subtleties of building Active Server Pages (ASP) applications, especially with the is-
sues of managing server-side resources and transaction management in a Web application
environment. I learned a lot about the use of client-side scripting, applets, and ActiveX
controls. I also learned a valuable lesson about testing applications: Client machines with
different operating systems can behave differently with the exact same HTML, Java, and
browser code. All of these experiences have driven me even more to a belief that Web ap-
plications need to be modeled and built just like any other complex software system. In
the years that followed, I continued to experiment with the latest Web technologies and
consulted with other companies with Web-related issues.

All throughout my Web application experiences, I tried to practice my object-oriented
skills in the area of Web application development. I had little problem applying use case
analysis, and it wasn’t until I started creating analysis and design models that I realized
that things were going to get difficult. When creating a Web application, my conceptual
focus was always on the Web page. My idea of a model kept revolving around the concept
of a site map. I knew that the navigation paths throughout the system were incredibly im-
portant to the understanding of the application and that any model of the system would
have to include them.

My earliest attempts at modeling Web applications started with Rumbaugh’s OMT
(Object Modeling Technique); later, when UML version 0.8 was publicly released, I be-
gan to apply it. I knew that for any modeling technique to be useful, it needed to both cap-
ture the relevant semantics of Web-specific elements, such as Web pages and hyperlinks
and their relations to the back-end elements of the system—middle tier objects and data-
bases. At the time, I found both OMT and UML inadequate to express the things I thought
were important in a Web application.

Being a somewhat successful object practitioner and engineer, I jumped to the con-
clusion that a whole new development methodology and notation were needed. After all,
if the existing methods and notation didn't have what I needed, the obvious solution was
to invent new ones. This, of course, is a trap that many of us in the software industry fall
into. In my free time, I started to draft new graphical and semantic ways to represent Web
application architectures. Proud of my work, I began showing it to two of my colleagues:
Joe Befumo and Gerald Ruldolph, both-experienced object practitioners. Their immediate
reaction was: Why? I tried to explain the issues involved with Web application develop-
ment and the need for visually expressing their designs. Yet everyone I spoke with contin-
ued to think that developing a new method and notation was a little overkill.

I started to rethink what I was doing. I wasn’t so arrogant to think that I was still right
and everyone else wrong. I had more homework to do. I reexamined my original needs: to
express Web application designs at the appropriate level of abstraction and detail, and most
important, as a part of the rest of the system’s design. Since UML was taking the industry
by storm, I realized that anything I did would have to work with UML.

So I went back to the UML. By now, it was in version 0.91, and a new concept was
included: stereotypes. At first, [ was clueless to what a stereotype was. The UML specifica-
tion is not the easiest reading, after all. It was long and difficult, but I knew that any success
in the area of modeling Web applications had to come from this direction. Eventually, I
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started to understand what was meant by stereotyping and the other extension mechanisms:
tagged values and constraints. I was finally starting to see light at the end of the tunnel.

I now had a mechanism with which I could introduce new semantics into the UML
grammar without disturbing the existing semantics. I always knew that the key was to pro-
vide a consistent and coherent way to model Web-specific elements at the right level of
abstraction with the models of the rest of the system. The UML extension mechanism pro-
vided me with the framework to do so.

The next step was to start defining the extension by creating stereotypes, tagged val-
ues, and constraints. For me, the ability to use custom icons in diagrams with stereotyped
elements went a long way to ease my concern for intuitive diagrams; also, Rational Rose,
my visual modeling tool of choice,' had just introduced a way to use one’s own stereo-
types in Rose models. I quickly created a set of icons for Web page abstractions. I tried to
make them consistent, mostly rectangular with the stereotype indication in the upper-left
corner. I used filled-in dog ears? to represent pages and unfilled dog ears to denote compo-
nents. Icons without any dog ears typically represented contained classes, which cannot
be requested directly by a Web browser. The icon for Web page components is similar to
the icon used by the three amigos—Grady Booch, James Rumbaugh, and Ivar Jacobson—
in their book, The Unified Modeling Language User Guide (Addison Wesley Longman, 1999).

Looking back, I remember spending less than a day to draw up the icons. I didn’t spend
much time on it then, since I always believed that eventually someone with a little more
experience would design some meaningful ones. In the almost two years since then, they
have remained essentially the same. I am surprised that I have received absolutely no com-
ments on the style of the icons from the hundred or more people who have been using them.
I think that for this version of the extension, the style of icons is going to stick.

As the extension evolved and a lot of the details and inconsistencies were getting cor-
rected, I always kept an eye out for code-generation possibilities. In my mind, the model-
ing technique could be validated if it were possible, in theory only, to unambiguously
generate and reverse engineer code. Since most of my experience was with Microsoft Ac-
tive Server Pages, I began creating Rational Rose scripts to forward engineer ASP code.
I've tailored the scripts to create Java Server Pages code also; from a code structure point
of view the two are very similar.

From that point, things proceeded at a tremendous rate. I published a white paper on
the Internet and presented the topic at the 1998 Rational User’s Conference in Orlando,
Florida. Grady Booch took an interest in the work and encouraged me. Addison Wesley
Longman asked whether I was interested in expanding the topic into a book. If I had only
known how difficult was going to be to write, I'm not sure that I would have agreed. I fol-
lowed the original white paper with a stream of other articles for both online and print
publications and started to get a regular stream of e-mail comments on the extension.

1. All of the sample models used in this effort were developed with Rational Rose. I had worked
with the Rose tools for many years prior to this and have recently given up independent consult-
ing to join the Rational team. (My praise of the Rose tool, however, would have been made even
if I were not a current Rational employee.)

2. A dog ear is the slang term for a bent or folded corner of paper.
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By the time this book hits the streets, I will have introduced the topic at five professional
conferences and written at least a dozen articles and white papers on the topic. Ideally, this
book will continue to propel the recognition that Web application development is a serious
topic and one from which we can learn and adopt the successful practices of the past.
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Foreword

As Jim points out, there's a big difference between building a simple web site and building
a web application: the former is relatively static, but the latter is much more dynamic, full
of rich content and capable of changing the state of the business as a result of user interac-
tion. A web site is sufficient if all you want to do is publish information, but you really
need the scope of a web application for anything else, such as e-business, collaborative
content, and distributed communities on the web.

Building a web site is relatively easy, because the barriers to entry are low and devel-
opment is largely uncomplicated. Building a web application, however, is hard work. Be-
cause of the rich content and its importance to the business, you'll have to deal with many
different stakeholders, ranging from graphic artists to code warriors to lawyers. Addition-
ally, you'll have to architect your system for continuous change, because a web applica-
tion that is stagnant is a web application that is dead. If you are webifying an existing client/
server system, you'll have to cope with the challenge of integrating legacy. Finally, you'll
have to prepare yourself for periods of peak interaction; a system that fails at the most critical
moments is one that will seriously harm the business.

You'll find lots of good books that explain how to build web sites. There are also many
good books that teach you the details of a specific web technology, such as HTML, XML,
EJB, SSL, CGI, TCP/IP, ASP, JSP, and lots of other acronym-enabled things. However,
this book is different, for it tells you how to build whole web applications upon these dis-
parate technologies. Building a quality web application in a predictable and repeatable
fashion is a team sport, and requires the use of proven development practices such as itera-
tive development, a focus on architecture, and visual modeling. Jim's book addresses all of
these practices, and more.

Xiii
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Jim's an experienced web developer, and I'm delighted that he's found this medium to
share his experience. I think you'll be delighted as well.

Grady Booch
Chief Scientist
Rational Software Corporation
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