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PREFACE

The last 100 years has seen huge strides in technology development as well as a rapid
depletion of nonrenewable energy sources. We are now at a crossroads in history for
energy utilization as well as for food production for the world’s increasing population.
The process of anaerobic digestion is an artificially contrived system to copy natural
biological processes for the recycling of organic materials. Energy is produced in the
form of methane, but the residue is considered valuable in that it contains nutrients
suitable for soil fertilization as well as other materials such as protein, which may be
used as animal feed.

For the biological system to operate satisfactorily, the engineering parameters must
be-adequate to provide the appropriate environment, and for the process to be of use,
the economics must be favorable. Considerations of Biology, Engineering, Economics,
Process Controls and Applications are considered in the following 12 chapters, and
attempts are made to bring together worldwide existing knowledge of a process that
may help to meet National Energy shortfalls or even produce a total alternative energy
system for some countries. The benefits for waste disposal, pollution and disease con-
trol are also discussed to highlight the method as a recycling system with more than
one function. 3

The potential for the process is clear. All that remains is for the practical exploitation
of anaerobic digestion to offset in part an approaching energy crisis, which will be of
far greater impact than those caused by recent energy production price rises. We hope
that the appropriate use of anaerobic digestion will be made soon and that the points
raised in this book will in some way aid those concerned in implementing decisions to
use the process.

David A. Stafford
Dennis L. Hawkes
Rex Hortqn

South Wales

July 1978
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Chapter 1

WHAT IS A DIGESTER?

[. INTRODUCTION ¢

Digesters vary widely with regard to complexity and layout. No simple design can
ever be considered as ideal, since many factors affect their arrangement and construc-
tion, and these need to be considered for an optimum to be arrived at for each partic-
ular set of circumstances and environmental conditions. There are, however, some
essential differences in digester principles, and for convenience, digester types have
been loosely categorized into four sections: batch, continuous, high rate, and others.
This order generally follows a pattern of ascending sophistication, the simpler designs
usually falling into the description of a batch digester and the more complicated heated
and stirred, two-stage layouts at the other end of the spectrum.

Within the various sections, this order has also been maintained, but inevitably some
overlapping is unavoidable. Another difficulty is that considerable interest is being
generated in the area of digester application. Consequently, there are probably more
varying designs being patented and published during this decade than in any other.

II. TYPES OF DIGESTERS

A.Batch Digesters
The waste to be treated is placed in the digester, a quantity of seed material or
biomass is then usually added, and the vessel is sealed and left until digestion is com-
pleted. Excreta from some warm-blooded animals invariably contain methanogenic
bacteria since these are naturally present in their intestines. Other types of organic
waste — such as straw, leaves, agricultural residues, and wastes from breweries, distil-
leries, paper and pulp mills, and textiles and food manufacturing industries — can
also be digested, but inoculation with the contents of a working digester will greatly
accelerate the start of the process. Without it, digestion could take many months.
Start-up without seeding can be speeded up by allowing the digester contents to decom-
pose semiaerobically for 2 to 4 -weeks depending on the volume and nature of the
waste. The digester is then closed and sealed to achieve an anaerobic environment, and
under these conditions, gas production should start in 3 to 4 days.' When gas produc-
tion tapers off or ceases, digestion is assumed to be complete, so the contents are then
removed from the tank, pit, trench, or bag, and preparations are undertaken to repeat
the cycle.
The simplest arrangement of this batch-loading principle is the vertical drum type
as shown in Figure 1. Waste is placed into the outer drum and then seeded with <digester
- contents. The inner drum is pushed down in the waste with gas taps open to exclude
any air, and when the digester begins to work, the inner drum is forced upwards by
digester gas thereby giving visual indication of gas generation. The disadvantages of
this simplicity are obvious. The amount of usable gas is relatively small, and the first
drum of gas should be vented to atmosphere since it usually contains air, which forms
an explosive mixture with methane at ratios of 1:4 to 1:14 if ignited. Also, initial gas
yields could be high in carbon dioxide.' Feeding in this arrangement is accomplished
by removing the inner drum, then removing some of the contents and replacing with
fresh waste, a time-consuming, messy, and inefficient operation. However, the system
is useful for preliminary experimentation and for obtaining methanogenic bacteria for
a particular waste.
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FIGURE 1. Vertical drum type.
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FIGURE 2. Diagram of Tollemache plant. (With permission from Sampson, S., Meth-
ane, Wadebridge Ecological Centre, Cornwall, U.K., 1975, 27.)

Many hundreds of digeéters were installed in Europe during World War II. These
simple arrangements were said to supply sufficient gas to supplement the needs of

small farm. The diagram in Rigure 2 shows such a plant.?. A series of pits was con-
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FIGURE 3. Flow diagram of the labor intensive Ducellier and Isman process which was
a batch system with high T.S. animal waste concentrations.

structed as shown. The waste material, dung, straw, vegetable tops, and cuttings were
shoveled or forked in and then seeded with anaerobic bacteria. The charge was then
trampled down and water hosed in to seal the contents. In this unheated version, reten-
tion times were long, especially in winter. A similar design by Ducellier and Isman is
shown in Figure 3. This was first developed in North Africa in 1937 and formed the
basis for many of the wartime French plants. An advantage of this type of system is
that the charge does not require to be watered down to the appropriate ‘‘thick creamy
consistency’’, as specified for the continuous and high-rate digester. Stable manure,
for example, was delivered in its natural condition, and apart from the topping up and
inoculating process, which could take about 10% of the total capacity, no other treat-
ment was required. However, it was clearly a very labor-intensive operation, and un-
loading especially must have been strenuous and unpleasant, taking place every 2 to 3
months.

It has long been known that decomposing garbage produces methane, together with
other gases. Until very recently, this fact had been considered a liability associased
with sanitary landfill applications. However, it now appears practical to utilize what
is, in effect, a batch-filled anaerobic digester. The number of sites available for exploi-
tation by this method is large enough to make the process economically viable. There
could be 13,000 to 20,000 waste disposal sites existing in the U.S.,* and while most of
them would be unsuitable fo methane recovery, it has been estimated that many
hundreds have potential for commercial methane recovery.® At least one company is
in business extracting gas from such sites.® Gas extracted from such landfills may be
utilized in four ways: '

1. Utilization of low calorific value gas for generation of steam or electricity by
incorporating suitable gas engines

2.  Supplying partially cleaned gas of low calorific value to industrial customers
(both of these applications could be subject to state utility commission jurisdic-
tion, and the cost of laying and maintaining pipelines and associated equipment
could prove costly and troublesome)

3. Purifying the biogas to standard fuel and injecting into a nearby utility company
pipeline to be used by the entire distribution area under normal natural gas usage
conditions

4. . Converting the landfill biogas to methanol or to liquified natural gas on site
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FIGURE4. Isman-type French farm digester.

The third alternative is considered to offer more advantages as a viable proposition.*

The technology of this extraction procedure, however, is not easy since embedding
a 150-mm diameter pipe into the bottom of landfill well and sucking out the gas pre-
sents many problems. If the landfill is pumped to extract gas at a faster rate than it is
being generated, the resulting partial vacuum could bring air into the essential anaer-
obic environment. Conversely, pumping the gas out at a rate slower than the natural
generation rate could mean that the pressure inside the well is sufficient to cause leak-
age of gas from unexpected points in the tip. The technology of the withdrawal process
requires considerable expertise from a range of various disciplines.”

Gas generation figures have been estimated to be around 30 to 90 m3/t of municipal
refuse, and typical methane content is 50.2% with carbon dioxide, say, 48% with
0.86% nitrogen, 0.19% hydrogen, 0.12% oxygen, and 0.45% other hydrocarbons.
Actual methane extraction from the Palos Verdes fill in Los Angeles, which receives
3600 t/day of solid waste (5 days/week), is reported to be about 8.3 m*/t.”

Although gas is generated for long periods (up to 50 years in some cases),” it is
believed that, under what can be described as average conditions, most of this will be
given off in the first 15 years. Clearly, factors such as type and consistency of waste,
temperature, pressure, air etc. will all contribute to this time, but the most significant
feature is percentage moisture content. Below about 25% water by weight, gas produc-
tion is virtually zero.* J

The French Institute of Research in Applied Chemistry is carrying out laboratory
and full-scale studies on animal waste and straw.® The laboratory equipment consists
of glass columns 2 m long X 200 mm in diameter which are packed with this combined
waste. Animal urine is heated and passed through the columns, maintaining a temper-
ature of 35°C. . : )

Isman’s long’experience in designing plants for this application is being used in the
full-scale trials, being undertaken on a farm. The digester is essentially as shown in
Figure 4. &



P1 ATE 1. Philippines digester of the type shown in Figure 9. (Courtesy of
Professor E. M. Rigor. University of the Philippines at Los Banos College
of Agriculture.)

PLATE 2. Batcifed digesters with floating gas holder at Maya Farms, Philip-
pines. (Courtesy of F. D. Maramba, Liberty Flour Mills Inc., Manila.)

B. Continually Fed Digesters

As the name suggests, this category of fermenting reactor requires the feed as in-
fluent to be deposited into the vessel at regular intervals. The rate of feeding should,
in theory, be continuous for maximum efficiency, but for practical reasons, the diges-
ters are usually fed intermittently, probably the most common period being once a
day.

For equilibrium conditions it follows that the digester must also be emptied by a
similar amount. On the simpler designs, which rely on gravity feed, this is automati-
cally catered for, but in the more sophisticated types, influent and effluent rates are
determined by pumps and associated equipment. Plate 1 shows an experimentad .diges-
ter working at the University of the Philippines Los Banos, and Plate 2 shows a much
larger unit at Maya Farms, Phillipines. S
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FIGURE 5. Digester (India).

Possibly the most widely publicized plants of this type are those developed in India
for digesting cow dung. The Indian Agricultural Research Institute had worked in this
field in the 1930s producing a design in 1939. The arrangement generally accepted as
being typical of its kind is that developed by the Gobar Gas Institute under the direc-
tion of Ram Bux Singh (Figure 5).'° These plants have been constructed since the mid-
1950s in increasing numbers and by 1973 the Khadi and Village Industries Commission
had set up over 6000 plants. By 1975 the number had reached 12,000, with a target of
installations of 100,000 units. This organization gives assistance by scrutinizing pro-
vosals, surveying sites, and supervising construction work. It also allots grants and
arranges bank loans."!

The design is a vertical displacement type, where the cattle dung is mixed with water
in a 4:5 proportion and introduced down the inlet pipe (usually at daily intervals) into
the digester. This, in turn, displaces an equal amount of contents into the drying bed.
Sizes and construction vary, but usually the fermenter is a brick-lined cylindrical pit
between 3.5 and 6 m deep with diameters varying between 1.6 m and 6 m. A small
family unit would be about 1.6 m in diameter and 3.6 m deep and would be suitable
for accepting the waste from, say, five cows, or 40 to 50 kilos of dung per day. The

|
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FIGURE 6. Digester (Pakistan).

output could be in the order of 3 m’ of biogas per day of about 55% methane, which
is sufficient to cater for the simple needs of a family in that particular part of the
world. The floating metal gas holder usually has the capacity to store 50 to 100% of
the daily gas production, and a retention time of 50 days is considered normal.

This very simple concept has variations, and Figures 6 to 9 show adaptations for
different countries,' while Figures 10 and 11 are an attempt to render this design suit-
able for colder climates.

China is reported to have tens of thousands of digesters operating, but it is thought
that most of these are small and similar in outline to the Korean type (Figure 8). The
basic similarity between this arrangement and the Indian design again reinforces the
conclusion that this very basic concept is well suited to third-world applications.

In Korea; the number of working digesters is said to be around 25,000, and these
are usually of around 5 to 6 m* capacity. Korean winters are far more severe than in
India; consequently, the operating temperatures in these simple, uninsulated designs -
will be low. Gas production would aiso be very low and cculd even cease altogether
under the worst conditions of perhaps —15°C. Attempts are being made to improve
gas generation during the 5-month winter period when it is most needed. Insulating
the digester with rice hull or rice hull cover has maintained the temperature at 8°C
with an outside January air temperature of —12°C. Erecting a 1-m high vinyl sheet
cover over the top of the digester under similar conditions recorded nearly 15°C, and
in these circumstances gas has been produced. )

The Korean Office of Rural Development has produced some interesting results
showing the effect of temperature on gas production, and some of these are shown in
Figure 12. As can be seen, increasing the temperature from 5 to 15°C boosts gas pro-
duction ten times. They have also shown the advantage of sunken digesters. Figure 13
shows that at 5-m depth, the ground temperature was almost 15°C compared with
-12°C aboveground.'



