ACCELERATING
MATLABwWITH
GPU CoMPUTING

A Primer with Examples

Jung W. Suh
Youngmin Kim

Accelerating MATLAB with
GPU Computing

A Primer with Examples

Jung W. Suh
Youngmin Kim

AMSTERDAM « BOSTON « HEIDELBERG * LONDON
NEW YORK ¢ OXFORD PARIS * SAN DIEGO
SAN FRANCISCO = SINGAPORE ¢ SYDNEY = TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Project Manager: Mohana Natarajan
Designer: Matthew Limbert

Morgan Kaufmann is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA
First edition 2014

Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the materialherein.
Because of rapid advances in the medical sciences, in particular, independentverification
of diagnoses and drug dosages should be made.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Application Submitted

ISBN: 978-0-12-408080-5

For information on all MK publications
visit our web site at www.mkp.com

Printed and bound in USA
14 15161718 10987654321

aa Working together
to grow libraries in

A
Rg%gﬁal developing countries

www.elsevier.com o www.bookaid.org

Related Titles from Morgan Kaufmann

\
\ e, [
% oy
orgy
MATLAB®
DANIEL . VALENTINE
Programming Massively
Parallel Processors APPLICATION DESIGN
AND DEVELOPMENT
@)
Essential Matlab for Engineers and Programming Massively Parallel CUDA Application Design and
Scientists Processors, 2nd Edition Development
Brian Hahn and David Valentine A Hands-on Approach Rob Farber
ISBN: 9780123943989 David Kirk and Wen-mei Hwu ISBN: 9780123884268

ISBN: 9780124159921

High-Performance
Deformable Image
Registration

High Performance
Algorithms for ming.

Manycore Processors

M<

Gregory Sharp

High Performance Deformable Intel Xeon Phi Coprocessor High The Art of Multiprocessor Program-
Image Registration Algorithms for Performance Programming ming, Revised Reprint

Manycore Processors Jim Jeffers and James Reinders Maurice Herlihy and Nir Shavit

James Shackleford, ISBN: 9780124104 143 ISBN: 9780123973375

Nagarajan Kandasamy, Gregory Sharp
ISBN: 9780124077416

MORGAN KAUFMANN

mkp.com

Accelerating MATLAB with GPU Computing

Preface

MATLAB is a widely used simulation tool for rapid prototyping and algorithm
development. Many laboratories and research institutions face growing demands to
run their MATLAB codes faster for computationally heavy projects after simple
simulations. Since MATLAB uses a vector/matrix representation of data, which is
suitable for parallel processing, it can benefit a lot from GPU acceleration.

Target Readers and Contents

This book is aimed primarily at the graduate students and researchers in the field of
engineering, science, and technology who need huge data processing without losing
the many benefits of MATLAB. However, MATLAB users come from various back-
grounds and do not necessarily have much programming experience. For those whose
backgrounds are not from programming, GPU acceleration for MATLAB may distract
their algorithm development and introduce unnecessary hassles, even when setting the
environment. This book targets the readers who have some or a lot of experience on
MATLAB coding but not enough depth in either C coding or the computer architec-
ture for parallelization. So readers can focus more on their research and work by
avoiding non-algorithmic hassles in using GPU and CUDA in MATLAB.

As a primer, the book will start with the basics, walking through the process of
setting MATLAB for CUDA (in Windows and Mac OSX), creating c-mex and m-file
profiling, then guide the users through the expert-level topics such as third-party
CUDA libraries. It also provides many practical ways to modify users” MATLAB
codes to better utilize the immense computational power of graphics processors.

This book guides the reader to dramatically maximize the MATLAB speed
using NVIDIA’s Graphics Processing Unit (GPU). NVIDIA’s Compute Unified
Device Architecture (CUDA) is a parallel computing architecture originally
designed for computer games but is getting a reputation in the general science and
technology fields for its efficient massive computation power. From this book, the
reader can take advantage of the parallel processing power of GPU and abundant
CUDA scientific libraries for accelerating MATLAB code with no or less effort
and time, and bring readers’ researches and works to a higher level.

Directions of this Book

GPU Utilization Using c-mex Versus Parallel Computing Toolbox

This book deals with Mathworks’s Parallel Computing Toolbox in Chapter 5.
Although Mathworks’s Parallel Computing Toolbox is a useful tool for speeding

X Preface

up MATLAB, the current version still has its limitation in making the Parallel
Computing Toolbox a general speeding-up solution, in addition to the extra cost of
purchasing the toolbox. Especially, since the Parallel Computing Toolbox targets
distributed computing over multicore, multiple computers and/or cluster machines
as well as GPU processing, GPU optimization for speeding up the user’s code is
comparatively limited both in speeding-up and supporting MATLAB functions.
Furthermore, if we limit to Mathworks’s the Parallel Computing Toolbox only,
then it is difficult to find an efficient way to utilize the abundant CUDA libraries to
their maximum. In this book, we address both the strengths and the limitations of
the current Parallel Computing Toolbox in Chapter 5. For the purpose of general
speeding up, GPU-utilization through c-mex proves a better approach and provides
more flexibility in current situation.

Tutorial Approach Versus Case Study Approach

As the book’s title says, we take more of a tutorial approach. MATLAB users may
come from many different backgrounds, and web resources are scattered over
Mathworks, NVIDIA, and private blogs as fragmented information. The tutorial
approach from setting the GPU environment to acquiring critical (but compressed)
hardware knowledge for GPU would be beneficial to prospective readers over a
wide spectrum. However, this book also has two chapters (Chapters 7 and 8) that
include case examples with working codes.

CUDA Versus OpenCL

When we prepared the proposal of this book, we also considered OpenCL as a
topic, because the inclusion of OpenCL would attract a wider range of readers.
However, while CUDA is more consistent and stable, because it is solely driven by
NVIDIA, the current OpenCL has no unified development environment and is still
unstable in some areas, because OpenCL is not governed by one company or insti-
tution. For this reason, installing, profiling, and debugging OpenCL are not yet
standardized. As a primer, this may distract the focus of this book. More impor-
tantly, for some reason Mathworks is very conservative in its support of OpenCL,
unlike CUDA. Therefore, we decided not to include OpenCL in this edition of our
book. However, we will again consider whether to include OpenCL in future edi-
tions if increased needs come from market or Mathworks’ direction changes.

After reading this book, the reader, in no time, will experience an amazing per-
formance boost in utilizing reader’s MATLAB codes and be better equipped in
research to enjoy the useful open-source resources for CUDA. The features this
book covers are available on Windows and Mac.

Contents

Preface

1 Accelerating MATLAB without GPU

1.1
1.2

1.3
14
1.5
1.6

1.7

Chapter Objectives

Vectorization

1.2.1 Elementwise Operation

1.2.2 Vector/Matrix Operation

1.2.3 Useful Tricks

Preallocation

For-Loop

Consider a Sparse Matrix Form

Miscellaneous Tips

1.6.1 Minimize File Read/Write Within the Loop

1.6.2 Minimize Dynamically Changing the Path and
Changing the Variable Class

1.6.3 Maintain a Balance Between the Code Readability
and Optimization

Examples

2 Configurations for MATLAB and CUDA

2.1
22

23

24

2.5
258

Chapter Objectives

MATLAB Configuration for c-mex Programming
2.2.1 Checklists

2.2.2 Compiler Selection

“Hello, mex!” using C-MEX

CUDA Configuration for MATLAB

2.4.1 Preparing CUDA Settings

Example: Simple Vector Addition Using CUDA
Example with Image Convolution

2.6.1 Convolution in MATLAB

2.6.2 Convolution in Custom C-mex

NN AR W e e

fd ek
(=]

[y
(=]

10
10

19
19
19
19
20
22
26
26
28
33
34
35

vi Contents

2.6.3 Convolution in Custom C-mex with CUDA 38
2.6.4 Brief Time Performance Profiling 42

2.7 Summary 44
3 Optimization Planning through Profiling 45
3.1 Chapter Objectives 45
3.2 MATLAB Code Profiling to Find Bottlenecks 45
3.2.1 More Accurate Profiling with Multiple CPU Cores 49

3.3 c-mex Code Profiling for CUDA 52
3.3.1 CUDA Profiling Using Visual Studio 52
3.3.2 CUDA Profiling Using NVIDIA Visual Profiler 54

3.4 Environment Setting for the ¢ -mex Debugger 65
4 CUDA Coding with c-mex 73
4.1 Chapter Objectives 73
4.2 Memory Layout for C-mex 73
4.2.1 Column-Major Order 73
4.2.2 Row-Major Order 76
4.2.3 Memory Layout for Complex Numbers in C-mex 77

4.3 Logical Programming Model 79
4.3.1 Logical Grouping 1 82
4.3.2 Logical Grouping 2 82
4.3.3 Logical Grouping 3 83

4.4 Tidbits of GPU 84
4.4.1 Data Parallelism 84
4.4.2 Streaming Processor 84
4.4.3 Steaming Multiprocessor 84
444 Warp 85
4.4.5 Memory 85

4.5 Analyzing Our First Naive Approach 85
4.5.1 Optimization A: Thread Blocks 89
4.5.2 Optimization B 95
4.5.3 Conclusion 97

5 MATLAB and Parallel Computing Toolbox 99
5.1 Chapter Objectives 929
5.2 GPU Processing for Built-in MATLAB Functions 99

5.2.1 Pitfalls in GPU Processing 104

Contents vii

5.3 GPU Processing for Non-Built-in MATLAB Functions 106
5.4 Parallel Task Processing 108
54.1 MATLAB Worker 108
542 parfor 109

5.5 Parallel Data Processing 112
5.5.1 spmd 112
5.5.2 Distributed and Codistributed Arrays 116
5.5.3 Workers with Multiple GPUs 120

5.6 Direct use of CUDA Files without C-meXx 120
6 Using CUDA-Accelerated Libraries 127
6.1 Chapter Objectives 127
6.2 CUBLAS 127
6.2.1 CUBLAS Functions 128
6.2.2 CUBLAS Matrix-by-Matrix Multiplication 128
6.2.3 CUBLAS with Visual Profiler 137

6.3 CUFFT 139
6.3.1 2D FFT with CUFFT 141
6.3.2 CUFFT with Visual Profiler 148

6.4 Thrust 151
6.4.1 Sorting with Thrust 151
6.4.2 Thrust with Visual Profiler 153

7 Example in Computer Graphics 157
7.1 Chapter Objectives 157
7.2 Marching Cubes 157
7.3 Implementation in MATLAB 161
7.3.1 Step 1 161

7.3.2 Step 2 163
7.3.3 Step 3 163
7.3.4 Step 4 164
7.3.5 Step 5 164
7.3.6 Step 6 165
7.3.7 Step 7 166
7.3.8 Step 8 167
7.3.9 Step 9 167

7.3.10 Time Profiling 174

viii Contents

7.4 Implementation in C-mex with CUDA 175
7.4.1 Step 1 175
7.4.2 Step 2 178
7.4.3 Time Profiling 179
7.5 Implementation Using C-mex and GPU 180
7.5.1 Step 1 180
7.5.2 Step 2 182
7.5.3 Step 3 182
7.5.4 Step 4 188
7.5.5 Step 5 188
7.5.6 Time Profiling 189
7.6 Conclusion 190
8 CUDA Conversion Example: 3D Image Processing 193
8.1 Chapter Objectives 193
8.2 MATLAB Code for Atlas-Based Segmentation 193
8.2.1 Background of Atlas-Based Segmentation 193
8.2.2 MATLAB Codes for Segmentation 194
8.3 Planning for CUDA Optimization Through Profiling 203
8.3.1 Profiling MATLAB Code 203

8.3.2 Analyze the Profiling Results and Planning
CUDA Optimization 207
8.4 CUDA Conversion 1 - Regularization 210
8.5 CUDA Conversion 2 - Image Registration 215
8.6 CUDA Conversion Results 228
8.7 Conclusion 228
Appendix 1: Download and Install the CUDA Library 233
Appendix 2: Installing NVIDIA Nsight into Visual Studio 239

Bibliography 243

1 Accelerating MATLAB without GPU

1.1 Chapter Objectives

In this chapter, we deal with the basic accelerating methods for MATLAB codes in
an intrinsic way — a simple code optimization without using GPU or C-MEX. You
will learn about the following:

» The vectorization for parallel processing.

« The preallocation for efficient memory management.

+ Other useful tips to increase your MATLAB codes.

* Examples that show the code improvements step by step.

1.2 Vectorization

Since MATLAB has the vector/matrix representation of its data, “vectorization”
can help to make your MATLAB codes run faster. The key for vectorization is to
minimize the usage of a for-1oop.

Consider the following two m files, which are functionally the same:

% nonVecl.m %Vecl.m
clearall; clearall;
e tic
A=0:0,000001:10; =0:0.000001:10;
B=0:0.000001:10; B=0:0.000001:10;
Z = zeros(size(A)); Z = zeros(size(A));
y=0; y =0;
for i =1:10000001 Yy =sin(0.5%A) * exp(B."2)";
Z(i) =sin(0.5%A(i)) *exp(B(i)*2); toc
y=y+12(i); y
end
toc

2 Accelerating MATLAB with GPU Computing

The left nonVecl.m has a for-1oop to calculate the sum, while the right Vecl.m
has no for-loop in the code.

>> nonVecl

Elapsed time is 0.944395 seconds.
y —
—1.3042e +48

>> Vecl
Elapsed time is 0.330786 seconds.

y =
—1.3042e + 48

The results are same but the elapsed time for Vecl.m is almost three times less
than that for nonVecl.m. For better vectorization, utilize the elementwise operation
and vector/matrix operation.

1.2.1 Elementwise Operation

The * symbol is defined as matrix multiplication when it is used on two matrices.

But the .* symbol specifies an elementwise multiplication. For example, if x =
[123]and v =1[456],

>> k=x *vy
k =
4 10 18

Many other operations can be performed elementwise:

>> k=x."2
k =
149

>> k=x./v
k =
0.2500 0.4000 0.5000

Many functions also support this elementwise operation:

>> k = sqrt(x)
k =
1.0000 1.4142 1.7321

>> k =s5in(x)
k =
0.8415 0.9093 0.1411

Accelerating MATLAB without GPU 3

V
\
=~
Il

log(x)

0 0.6931 1.0986

V
\%

-
Il

abs(x)

Even the relational operators can be used elementwise:

>> R = rand(2,3)
R =
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975
>> (R>0.2) & (R<0.8)

ans =

o O
O =

>>x =5

>>x>=[123;456;789]

ans =

O = =
O =
o O =

We can do even more complicated elementwise operations together:

>> A=1:10;
i B2
>> L =0.120:1513

>> D=5:14;

>>M=B./(A.*D .*sin(C));

1.2.2 Vector/Matrix Operation

Since MATLAB is based on a linear algebra software package, employing vector/
matrix operation in linear algebra can effectively replace the for-1oop, and result
in speeding up. Most common vector/matrix operations are matrix multiplication
for combining multiplication and addition for each element.

4 Accelerating MATLAB with GPU Computing

If we consider two column vectors, a and b, the resulting dot product is the
1 X 1 matrix, as follows:

a, b,
a=|a,|, b=|b
a; b,

=

a-b=a’b= [a)r ay az] = [axbx + ayby + azbz]

Sl a
<

b

If two vectors, a and b, are row vectors, the a - b should be ab” to get the 1 X 1
matrix, resulting from the combination of multiplication and addition, as follows.

A=1:10 %1x10matrix A=1:10 %21x10matrix
B=0.1:0.1:1.0 %1x10matrix| B=0.1:0.1:1.0 %21x10matrix
C=0; C=0:

fori=1:10 C=A*B'; %A-B'

C=C+A(i)*B(i);

end

In many cases, it is useful to consider matrix multiplication in terms of vector
operations. For example, we can interpret the matrix-vector multiplication y = Ax
as the dot products of x with the rows of A:

4 MY/ 5 f
Y| =1]...a... X
: ..as. .. :

yi=a-x

1.2.3 Useful Tricks

In many applications, we need to set upper and lower bounds on each element. For
that purpose, we often use if and elseif statements, which easily break vectoriza-
tion. Instead of if and elseif statements for bounding elements, we may use min
and max built-in functions:

% ifExample.m % nonifExample.m

clearall; clearall;
tie He

Accelerating MATLAB without GPU

0:0.000001:10;
0:0.000001:10;

zeros(size(A));
=0;
fori=1:10000001

A:
B =
Z
y

if(A(i) <0.1) ACi)=0.1;
elseif(A(i)>0.9)A(i)=0.9;
end

y=y+12(i);
end

toc
Y

Z(i) =sin(0.5*%A(i)) * exp(B(i)"2);

Il

0:0.000001:10;
0:0.000001:10;

zeros(size(A));
0;
A=max(A, 0.1);

% max (A, LowerBound)
% A >= LowerBound

A
B
z
Yy

A=min(A, 0.9);
»min(A, UpperBound)
% A <= UpperBound

y =sin(0.5%A) *exp(B."2)";

toc
y

>> ifExample

Elapsed time is 0.878781 seconds.

y =
5.875%9e + 47

>> nonifExample

Elapsed time is 0.309516 seconds.

y =
5.875%e + 47

Similarly, if you need to find and replace some values in elements, you can also
avoid if and elseif statements by using the find function to keep vectorization.

% ifExample2.m

clearall;

tic

A=0:0.000001:10;
B=0:0.000001:10;

L = zeros(size(A));
y=0;

fori=1:10000001
if(A(i) == 0.5) A(i) =0;
end

% nonifExample2.m
clearall;

tic
A=0:0.000001:10;
B=0:0.000001:10;

. = zeros(size(A));
y=0;

% Vector Ais comparedwith scalar
% 0.5

A(find(A == 0.5)) =0;

