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Preface

MATLAB is a widely used simulation tool for rapid prototyping and algorithm
development. Many laboratories and research institutions face growing demands to
run their MATLAB codes faster for computationally heavy projects after simple
simulations. Since MATLAB uses a vector/matrix representation of data, which is
suitable for parallel processing, it can benefit a lot from GPU acceleration.

Target Readers and Contents

This book is aimed primarily at the graduate students and researchers in the field of
engineering, science, and technology who need huge data processing without losing
the many benefits of MATLAB. However, MATLAB users come from various back-
grounds and do not necessarily have much programming experience. For those whose
backgrounds are not from programming, GPU acceleration for MATLAB may distract
their algorithm development and introduce unnecessary hassles, even when setting the
environment. This book targets the readers who have some or a lot of experience on
MATLAB coding but not enough depth in either C coding or the computer architec-
ture for parallelization. So readers can focus more on their research and work by
avoiding non-algorithmic hassles in using GPU and CUDA in MATLAB.

As a primer, the book will start with the basics, walking through the process of
setting MATLAB for CUDA (in Windows and Mac OSX), creating c-mex and m-file
profiling, then guide the users through the expert-level topics such as third-party
CUDA libraries. It also provides many practical ways to modify users” MATLAB
codes to better utilize the immense computational power of graphics processors.

This book guides the reader to dramatically maximize the MATLAB speed
using NVIDIA’s Graphics Processing Unit (GPU). NVIDIA’s Compute Unified
Device Architecture (CUDA) is a parallel computing architecture originally
designed for computer games but is getting a reputation in the general science and
technology fields for its efficient massive computation power. From this book, the
reader can take advantage of the parallel processing power of GPU and abundant
CUDA scientific libraries for accelerating MATLAB code with no or less effort
and time, and bring readers’ researches and works to a higher level.

Directions of this Book

GPU Utilization Using c-mex Versus Parallel Computing Toolbox

This book deals with Mathworks’s Parallel Computing Toolbox in Chapter 5.
Although Mathworks’s Parallel Computing Toolbox is a useful tool for speeding
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up MATLAB, the current version still has its limitation in making the Parallel
Computing Toolbox a general speeding-up solution, in addition to the extra cost of
purchasing the toolbox. Especially, since the Parallel Computing Toolbox targets
distributed computing over multicore, multiple computers and/or cluster machines
as well as GPU processing, GPU optimization for speeding up the user’s code is
comparatively limited both in speeding-up and supporting MATLAB functions.
Furthermore, if we limit to Mathworks’s the Parallel Computing Toolbox only,
then it is difficult to find an efficient way to utilize the abundant CUDA libraries to
their maximum. In this book, we address both the strengths and the limitations of
the current Parallel Computing Toolbox in Chapter 5. For the purpose of general
speeding up, GPU-utilization through c-mex proves a better approach and provides
more flexibility in current situation.

Tutorial Approach Versus Case Study Approach

As the book’s title says, we take more of a tutorial approach. MATLAB users may
come from many different backgrounds, and web resources are scattered over
Mathworks, NVIDIA, and private blogs as fragmented information. The tutorial
approach from setting the GPU environment to acquiring critical (but compressed)
hardware knowledge for GPU would be beneficial to prospective readers over a
wide spectrum. However, this book also has two chapters (Chapters 7 and 8) that
include case examples with working codes.

CUDA Versus OpenCL

When we prepared the proposal of this book, we also considered OpenCL as a
topic, because the inclusion of OpenCL would attract a wider range of readers.
However, while CUDA is more consistent and stable, because it is solely driven by
NVIDIA, the current OpenCL has no unified development environment and is still
unstable in some areas, because OpenCL is not governed by one company or insti-
tution. For this reason, installing, profiling, and debugging OpenCL are not yet
standardized. As a primer, this may distract the focus of this book. More impor-
tantly, for some reason Mathworks is very conservative in its support of OpenCL,
unlike CUDA. Therefore, we decided not to include OpenCL in this edition of our
book. However, we will again consider whether to include OpenCL in future edi-
tions if increased needs come from market or Mathworks’ direction changes.

After reading this book, the reader, in no time, will experience an amazing per-
formance boost in utilizing reader’s MATLAB codes and be better equipped in
research to enjoy the useful open-source resources for CUDA. The features this
book covers are available on Windows and Mac.
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1 Accelerating MATLAB without GPU

1.1 Chapter Objectives

In this chapter, we deal with the basic accelerating methods for MATLAB codes in
an intrinsic way — a simple code optimization without using GPU or C-MEX. You
will learn about the following:

» The vectorization for parallel processing.

« The preallocation for efficient memory management.

+ Other useful tips to increase your MATLAB codes.

* Examples that show the code improvements step by step.

1.2 Vectorization

Since MATLAB has the vector/matrix representation of its data, “vectorization”
can help to make your MATLAB codes run faster. The key for vectorization is to
minimize the usage of a for-1oop.

Consider the following two m files, which are functionally the same:

% nonVecl.m %Vecl.m
clearall; clearall;
e tic
A=0:0,000001:10; =0:0.000001:10;
B=0:0.000001:10; B=0:0.000001:10;
Z = zeros(size(A)); Z = zeros(size(A));
y=0; y =0;
for i =1:10000001 Yy =sin(0.5%A) * exp(B."2)";
Z(i) =sin(0.5%A(i)) *exp(B(i)*2); toc
y=y+12(i); y
end
toc
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The left nonVecl.m has a for-1oop to calculate the sum, while the right Vecl.m
has no for-loop in the code.

>> nonVecl

Elapsed time is 0.944395 seconds.
y —
—1.3042e +48

>> Vecl
Elapsed time is 0.330786 seconds.

y =
—1.3042e + 48

The results are same but the elapsed time for Vecl.m is almost three times less
than that for nonVecl.m. For better vectorization, utilize the elementwise operation
and vector/matrix operation.

1.2.1 Elementwise Operation

The * symbol is defined as matrix multiplication when it is used on two matrices.

But the .* symbol specifies an elementwise multiplication. For example, if x =
[123]and v =1[456],

>> k=x *vy
k =
4 10 18

Many other operations can be performed elementwise:

>> k=x."2
k =
149

>> k=x./v
k =
0.2500 0.4000 0.5000

Many functions also support this elementwise operation:

>> k = sqrt(x)
k =
1.0000 1.4142 1.7321

>> k =s5in(x)
k =
0.8415 0.9093 0.1411
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Even the relational operators can be used elementwise:

>> R = rand(2,3)
R =
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975
>> (R>0.2) & (R<0.8)

ans =

o O
O =

>>x =5

>>x>=[123;456;789]

ans =

O = =
O =
o O =

We can do even more complicated elementwise operations together:

>> A=1:10;
i B2
>> L =0.120:1513

>> D=5:14;

>>M=B./(A.*D .*sin(C));

1.2.2 Vector/Matrix Operation

Since MATLAB is based on a linear algebra software package, employing vector/
matrix operation in linear algebra can effectively replace the for-1oop, and result
in speeding up. Most common vector/matrix operations are matrix multiplication
for combining multiplication and addition for each element.
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If we consider two column vectors, a and b, the resulting dot product is the
1 X 1 matrix, as follows:

a, b,
a=|a,|, b=|b
a; b,

=

a-b=a’b= [a)r ay az] = [axbx + ayby + azbz]

Sl a
<

b

If two vectors, a and b, are row vectors, the a - b should be ab” to get the 1 X 1
matrix, resulting from the combination of multiplication and addition, as follows.

A=1:10 %1x10matrix A=1:10 %21x10matrix
B=0.1:0.1:1.0 %1x10matrix| B=0.1:0.1:1.0 %21x10matrix
C=0; C=0:

fori=1:10 C=A*B'; %A-B'

C=C+A(i)*B(i);

end

In many cases, it is useful to consider matrix multiplication in terms of vector
operations. For example, we can interpret the matrix-vector multiplication y = Ax
as the dot products of x with the rows of A:

4 MY/ 5 f
Y| =1]...a... X
: ..as. .. :

yi=a-x

1.2.3 Useful Tricks

In many applications, we need to set upper and lower bounds on each element. For
that purpose, we often use if and elseif statements, which easily break vectoriza-
tion. Instead of if and elseif statements for bounding elements, we may use min
and max built-in functions:

% ifExample.m % nonifExample.m

clearall; clearall;
tie He
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0:0.000001:10;
0:0.000001:10;

zeros(size(A));
=0;
fori=1:10000001

A:
B =
Z
y

if(A(i) <0.1) ACi)=0.1;
elseif(A(i)>0.9)A(i)=0.9;
end

y=y+12(i);
end

toc
Y

Z(i) =sin(0.5*%A(i)) * exp(B(i)"2);

Il

0:0.000001:10;
0:0.000001:10;

zeros(size(A));
0;
A=max(A, 0.1);

% max (A, LowerBound)
% A >= LowerBound

A
B
z
Yy

A=min(A, 0.9);
»min(A, UpperBound)
% A <= UpperBound

y =sin(0.5%A) *exp(B."2)";

toc
y

>> ifExample

Elapsed time is 0.878781 seconds.

y =
5.875%9e + 47

>> nonifExample

Elapsed time is 0.309516 seconds.

y =
5.875%e + 47

Similarly, if you need to find and replace some values in elements, you can also
avoid if and elseif statements by using the find function to keep vectorization.

% ifExample2.m

clearall;

tic

A=0:0.000001:10;
B=0:0.000001:10;

L = zeros(size(A));
y=0;

fori=1:10000001
if(A(i) == 0.5) A(i) =0;
end

% nonifExample2.m
clearall;

tic
A=0:0.000001:10;
B=0:0.000001:10;

. = zeros(size(A));
y=0;

% Vector Ais comparedwith scalar
% 0.5

A(find(A == 0.5)) =0;




