ALGORITHMS +
DATA STRUCTURES =
PROGRAMS

NIKLAUS WIRTH

ALGORITHMS +
DATA STRUCTURES =

PROGRAMS

NIKLAUS WIRTH

Eidgenossische Technische Hochschule
Zurich, Switzerland

PRENTICE-HALL, INC.

ENGLEWOOD CLIFES, N.J.

Library of Congress Cataloging in Publication Data

WiRTH, NIKLAUS.
Algorithms + data structures = programs.
Bibliogzaphy: p.
Includes index.
1. Electronic digital computers—-Programming.
2. Data structures (Computer science) 3, Algorithms.
I. Title.
QA76.6.WS56 001.6'42 75-11599
I1SBN 0-13-022418-9

© 1976
by PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey

All rights reserved. No part of this
book mav be reproduced in any form
or by any means without permission
in writing from the publisher.

Current printing {last digit:
19 18 17 1€ 15

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC,, London
PRENTICE-HALL OF AUSTRALIA, PTY., LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tekyo '
PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore

PREFACE

In recent years the subjec
J4 discipline whose maste:
many engineering projects and which is amenable to scientific treatment and
presentation. It has advanced from a craft to an academic discipline. The
initial outstanding contributions toward. this development were made by
E. W. Dijkstra and C. A. R. Hoare. Dijkstra’s “Notes on Structured Pro-
gramming™* opened a new view of programming as a scientific subject and
an intellectual challenge, and it coined the title for a “revolution” in pro-
gramming. Hoare's “Axiomatic Basis of Computer Programming”t showed
in a lucid manner that programs are amenable to an exacting analysis based
on mathematical reasoning. Both these papers argue convincingly that many
programming errors can be prevented by making programmers aware of the
methods and techniques which they hitherto applied intuitively and often
unconsciously. These papers focused their attention on the aspects of com-
position and analysis of programs, or, more explicitly, on the structure of
algorithms represented by program texts. Yet, it is abundantly clear that a
systematic and scientific approach to program construction primarily has a
bearing in the case of large, complex programs which involve complicated
sets of data. Hence, a methodology of programming is also bound to include
all aspects of data structuring. Programs, after all, are concrete formulations
of abstract algorithms based on particular representations and structures
of data. An outstanding contribution to bring order into the bewildering
variety of terminology and concepts on data structures was made by Hoare
through his “Notes on Data Structuring.”t It made clear that decisions

*In Structured Programming by Dahl, Djkstra, and Hoare (New York: Academic
Press, 1972), pp. 1-82.

tIn Comm. ACM, 12, No. 10 (1969), 576-83.

Hn Structured Programming, pp. 83-174

xii

PREFACE xiii

about structuring data cannot be made without knowledge of the algo-
rithms applied to the data and that, vice versa, the structure and choice
of algorithms often strongly depend on the structure of the underlying data.
In short, the subjects of program composition and data structures are insep-
arably intertwined.

Yet, this book starts with a chapter on data structure for two reasons.
First, one has an intuitive feeling that data precede algorithms: you must
have some objects before you can perform operations on them. Second, and
this is the more immediate reason, this book assumes that the reader is
familiar with the basic notions of computer programming. Traditionally and
sensibly, however, introductory programming courses concentrate on al-
gorithms operating on relatively simple structures of data. Hence, an intro-
ductory chapter on data structures seems appropriate.

Throughout the book, and particularly in Chap. |, we follow the theory
and terminology expounded by Hoare* and realized in the programming
_language PASCAL.t The essence of this theory is that data in the first
instance represent abstractions of real phenomena and are preferably for-
mulated as abstract structures not necessarily realized in common program-
ming languages. In the process of program construction the data represen-
tation is gradually refined—in step with the refinement of the algorithm—
to comply more and more with the constraints imposed by an available pro-
gramming system.! We therefore postulate a number of basic building
principles of data structures, called the fundamental structures. It is most
important that they are constructs that are known to be quite easily imple-
mentable on actual computers, for only in this case can they be considered
the true elements of an actual data representation, as the molecules emerging
from the final step of refinements of the data description. They are the record,
the array (with fixed size), and the sez. Not surprisingly, these basic building
principles correspond to mathematical notions which are fundamental as
well.

A cornerstone of this theory of data structures is the distinction between
fundamental and “advanced” structures. The former are the molecules—
themselves built out of atoms—which are the components of the latter
Variables of a fundamental structure change only their value, but never
their structure and never the set of values they can assume. As a consequence,
the size of the store they occupy remains constant. “Advanced” structures,
however, are characterized by their change of value and structure during

*“Notes of Data Structuring.”

+N. Wirth, “The Programming Language Pascal,” Acta Injormatica, 1, No. 1 (1971),
35-63.

IN. Wirth, “Program Development by Stepwise Refinement,” Comm. ACM, 14, No. 4
(1971), 221-27. :

Xiv PREFACE

the execution of a program. More sophisticated techniques are therefore
needed for their implementation.

The sequential file—or simply the sequence—appears as a hybrid in this
classification. It certainly varies its length; but that change in structure is of
4 trivial nature. Since the sequential fle plays a truly fundamental role in
practically all computer systems, it is included among the fundamental
structures in Chap. 1.

The second chapter treats sorting algorithms. 1t displays a variety of
different methods, all serving the same purpose. Mathematical analysis of
some of these algorithms:shows the advantages and disadvantages of the
methods, and it makes the;programmer aware of the importance of analysis
in the choice of good solutions for a given problem. The partitioning into
methods for sorting arrays:and methods for sorting files (often called internal
and external sorting) exhibits the crucial influence of data representation on
the choice of applicable-algorithms and on their complexity. The space
allocated to sorting wouldenot be so large were it not for the fact that sorting
constitutes an ideal vehicle-for illustrating so many principles of program- -
ming and. situations occurring in most other applications. It often seems
that one could compose an entire programming course by selecting examples
from sorting only.

Another topic that is-usually omitted in introductory programming
courses but one that plays an important role in the conception of many
algorithmic solutions is recursion. Therefore, the third chapter is devoted to
recursive algorithms. Recursion is shown to be a generalization of repetition
(iteration), and as such it is'an important and powerful concept in program-
ming. In many programming tutorials it is unfortunately exemplified by
cases in which simple iteration would suffice. Instead, Chap. 3 concentrates
on several examples of problems in which recursion allows for a most natural
formulation of a solution, whereas use of iteration would lead to obscure
and cumbersome programs. The class of backtracking algorithms emerges
as an ideal application of recursion, but the most obvious candidates for the
use of recursion are algorithms operating on data whose structure is defined
recursively. These cases are treated in the last two chapters, for which the
third chapter provides a welcome background.

Chapter 4 deals with dynamic data structures, i.e., with data that change
their structure during the execution of the program. It is shown that the
recursive data structures are an important subclass of the dynamic structures
commonly used. Although a recursive definition is both natural and possible
in these cases, it is usually not used in practice. Instead, the mechanism
used in its implementation is made evident to the programmer by forcing
him to use explicit reference or pointer variables. This book follows this
technique and reflects the present state of the art: Chapter 4 is devoted to

PREFACE Xv

programming with pointers, to lists, trees, and to examples involving even
more complicated meshes of data. It presents what is often (and somewhat
inappropriately) called “list processing.” A fair amount of space is devoted
to tree organizations, and in particular to search trees. The chapter ends
with a presentation of scatter tables, also called “hash™ codes, which are
often preferred to search trees. This provides the possibility of comparing
two fundamentally different techniques for a frequently encountered applica-
tion.

The last chapter consists of a concise introduction to the definition of
Jormal languages and the problem of parsing, and of the construction of a
compiler for a smali and simple language for a simple computer. The moti-
vation to include this chapter is threefold. First, the successful programmer
should have at least some insight into the basic problems and techniques of
the compilation process of programming languages. Second, the number of
applications which require the definition of a simple input or control lan-
guage for their convenient operation is steadily growing. Third, formal
languages define a recursive structure upon sequences of symbols; their
processors are therefore excellent examples of the beneficial application of
recursive techniques, which are crucial to obtaining a transparent structure
in an area where programs tend to become large or even enormous. The
choice of the sample language, called PL/0, was a balancing act between a
language that is too trivial to be considered a valid example at all and a
language whose compiler would clearly exceed the size of programs that can
usefully be included in a book that is not directed only to the compiler
specialist.

Programming is a constructive art. How can a constructive, inventive
activity be taught? One method is to crystallize elementary composition
principles out of many cases and exhibit them in a systematic manner. But
programming is a field of vast variety often involving complex intellectual
activities. The belief that it could ever be condensed into a sort of pure
“recipe teaching” is mistaken. What remains in our arsenal of teaching
methods is the careful selection and presentation of master examples.
Naturally, we should not believe that every perdon is capable of gaining
equally much from the study of examples. It is the characteristic of this
approach that much is left to the student, to his diligence and intuition.
This is particularly true of the relatively involved and long examples of
programs. Their inclusion in this book is not accidental. Longer programs
are the “normal” case in practice, and they are much more suitable for
exhibiting that elusive but essential ingredient called style and orderdy
structure. They are also meant to serve as exercises in the art of program
reading, which too often is neglected in favor of program writing. This is a
primary motivation behind the inclusion of larger programs as examples in

xvi PREFACE

their entirety. The reader is led through a gradual development of the
program; he is given various “snapshots” in the evolution of a program,
whereby this development becomes manifest as a stepwise refinement of the
details. I consider it essential that programs are shown in final form with
sufficient attention to details, for in programming, the devil hides in the
details. Although the mere presentation of an algorithm’s principle and its
mathematical analysis may be stimulating and challenging to the academic
mind, it scems dishonest to the engineering practitioner. I have therefore
strictly adhered to the rule of presenting the final programs in a language
in which they can actually be run on a computer.

Of course, this raises the problem of finding a form which at the same
time is both machine executable and sufficiently machine independent to be
included in such a text. In this respect, neither widely used languages nor
abstract notations proved to be adequate. The language PASCAL provides
an appropriate compromise; it had been developed with exactly this aim in
mind, and it is therefore used throughout this book. The programs can
easily be understood by programmers who are familiar with some other
high-level language, such as ALGOL 60 or PL/1, because it is easy to under-
stand the PASCAL notation while proceeding through the text. However,
this not to say that some preparation would not be beneficial. The book
Systematic Programming* provides an ideal background because it is also
based on the PASCAL notation. The present book was, however, not
intended as a manual on the langnage PASCAL; there exist more appro-
priate texts for this purpose.t

This book is a condensation—and at the same time an elaboration—of
several courses on programming taught at the Federal Institute of Tech-
nology (ETH) at Zirich. 1 owe many ideas and views expressed in this book
to discussions with my collaborators at ETH. In particular, I wish to thank
Mr. H. Sandmayr for his careful reading of the manuscript, and Miss Heidi
Theiler for her care and patience in typing the text. I should alse like to
mention the stimulating influence provided by meetings of the Working
Groups 2.1 and 2.3 of IFIP, and particularly the many memorable argu-
ments 1 had on these occasions with E. W. Dijkstra and C. A.R. Hoare,
Last but not least, ETH generously provided the environment and the
computing facilities without which the preparation of this text would have
been impossible.

N. WIRTH

*N. Wirth (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.)
+K. Jensen and N, Wirth, “PASCAL—User Manual and Report” Lecture Notes in
Computer Science, Vol, 18 (Berlin, New York; Springer-Veriag, 1974) .

CONTENTS

PREFACE x

DECLARATION 266

‘ FUNDAMENTAL DATA STRUCTURES 1

i.1 Introduction 1
1.2 The Concent of Data Type 4
1.3 Primitive Data Types 6
1.4 Standard Primitive Types 8
1.5 Subrange Types 10
1.6 The Array Structure i1
1.7 The Record Structure 16
1.8 Variants of Record Struciures 20
1.9 The Set Structure 23 :
1.10 Representation of Array, Record, and Set Structures 29

1.10.1 Representation of Arravs 30
1.10.2 Representation of Record Structures 32
1.10.3 Representation of Scts 33

1.11 The Sequential File Structurc 34

i1.11.1 Elementary File Opemiors 37
1.11.2 Files with Substructure 39
1.11.3 Texts 41

1.11.4 A File Editing Program 49

ix

CONTENTS

SORTING 56

2.1 Introduction 56
2.2 Sorting Arrays 59

2.2.1 Sorting by Straight Insertion 60

2.2.2 Sorting by Straight Selection 63

2.2.3 Sorting by Straight Exchange 65

2.2.4 Insertion Sort by Diminishing Increment 68
2.2.5 Tree Sort 70

2.2.6 Partition Sort 76

2.2.7 Finding the Median 82

2.2.8 A Comparison of Array Sorting Methods 84

2.3 Sorting Sequential Files 87

2.3.1 Straight Merging 87

2.3.2 Natural Merging 92

2.3.3 Balanced Multiway Merging 99
2.3.4 Polyphase Sort 104

2.3.5 Distribution of Initial Runs 116

RECURSIVE ALGORITHMS 126

3.1 Introduction 125

3.2 When Not to Use Recursion 127

3.3 Two Examples of Recursive Programs 130
3.4 Backtracking Algorithms 137

3.5 The Eight Queens Problem 143

3.6 The Stable Marriage Problem 148

3.7 The Optimal Selection Problem 154

DYNAMIC INFORMATION STRUCTURES 162

4.1 Recursive Data Types 162
4.2 Pointers or References 166
4,3 Linear Lists 171

4.3.1 Buasic Operations 171
4.3.2 Ordered Lists and Re-organizing Lists 174
4.3.3 An Application; Topological Sorting 182

4.4 Tree Structures 189

44.1 Basic Concepts and Definitions 189
4.4.2 Basic Ope:aiions on Binary Trees 198
44.3 Tree Search and Insertion 201

4.5

4.6

CONTENTS

444 Tree Deletion 210
4.4.5 Analysis of Tree Search and Insertion 211
4.4.6 Balanced Trees 215
4.4.7 Balanced Tree Insertion 216
4.4.8 Balanced Tree Deletion 222
4.4.9 Optimal Search Trees 226
4.4.10 Displaying a Tree Structure 232

Multiway Trees 242

4.5.1 B-Trees 245
4.5.2 Binary B-Trees 257

Key Transformations (Hashing) 264

4.6.1 Choice of a Transformation Function 266
4.6.2 Collision Handling 266
4.6.3 Analysis of Key Transformation 271

5 LANGUAGE STRUCTURES AND COMPILERS 280

5.1
5.2
5.3
54
5.5
5.6
5.7
58
5.9
5.10
5.11

Language Definition and Structure 280

Sentence Analysis 283

Constructing a Syntax Graph 288

Constructing a Parser for a Given Syntax 291
Constructing a Table-Driven Parsing Program 295
A Translator from BNF into Parser-Driving Data Structures 299
The Programming Language PL/0 307

A Parser for PL/O 311

Recovering from Syntactic Errors 320

A PL/O Processor 331

Code Generation 344

APPENDICES

A THE ASCH CHARACTER SET 351

B PASCAL SYNTAX DIAGRAMS 362

SUBJECT INDEX 359

INDEX OF PROGRAMS 365

xi

l FUNDAMENTAL DATA
STRUCTURES

1.1. INTRODUCTION

The modern digital computer was invented and intended a: a device
that should facilitate and speed up complicated and time-consuming com-
putations. In the majority of applications its capability to store and access
large amounts of information plays the dominant part ard is considered to
be its primary characteristic, and its ability to compute 1.2, to calculate,
to perform arithmetic, has in many cases become almost irrelevant.

In all these cases, the large amount cf information that is to be processed
in some sense represents an abstraction of a part of the real world. The infor-
mation that is available to the computer consists of a selected set of data
about the real world, namely, that set which is considered relevant to the
problem at hand, that set from which it is believed that the desired results
can be derived. The data represent an abstraction of reality in the sense that
certain properties and characteristics of the real objects are ignored because
they are peripheral and irrelevant to the particular problem. An abstraction
is thereby also a simplificatior of facts.

We may regard a personuel file of an emplover as an example. Every
employee is represented {(abstracted) on this file by a set of data relevant
either to the employer or to his accounting procedures. This set may include
some identification of the emplovee, for example, his name and his salary.
But it will most probably not include irrelevant data such as the color of
hair, weight, and height.

In solving a problem with or without a computer it is necessary to choose
an abstraction of reality, i.e., to define a set of data that is to represent the
real sithation. This choice must be guided by the problem to be solved.
Then follows a choice of representation of this information. This choice is

1

2 FUNDAMENT AL DATA STR' (TLRFS cnap 1

guided by the tool "hat s to solve the piebiem, i, by the frahines offered
1y the cop 'ter In most cases these (4o steps are not eirvrely »ndependent

The chor > of representatin of data s often a fairiy difficult one, and 1t 15
not unrguc’. determined by the facihities available It must always be taken
i the hght of the operations that are to be performed on the data A good
exarople < the represeniation of numbers, which are themselves abstractions
of propert e~ ¢ f ol jects to be characterized If addition 1s the only (or at least
the dom nart) operation to be performed. then a good way to represent the
nimber 1 1y to wiite » strokes The addition rule on this representation is
indeed ver, obvious and simple The Roman numerals are based on the same
principle of simphcity, and the adding rules are similatly straightforward
for simall rumbers On the othey hand the epresentation by Arabic numerals
repu,res ules that are far from obvious (for mall numbers) and they must
he me (rsel However, ihe situation is inverse when we consider either
add to. (1 1irge pumbers or multiphicatton and division The decomposition
of these vper-tions into stmpler ones 15 much easier in the case of representa-
tie n by Arabic numerals hecause of its systematic structaring principle that i
based on peutional weight «f the digats,

Jt 1< verl-known that computers use an internal representation based
on hmary digits (bits) Thrs representation 1s unsuitable for human beings
because of the usually large number of digits involved, but it 1s most suitable
for electronic circuits because the two values 0 and | can be represented
conveniently and rehably by the prescnce or absence of electric curreats,
elec*ric charge and magnetic ficlds

From this example we can also see that the question of representation
often transcends several levels of detail Given the problem of represening,
say, the positton of an object, the firi decision may lead to the chowce of a
pair of real numbers 1n, say, erther Cartesian or polar coordinates The second
decicton may lead to a floating-pomt represertation, where every real number
1 conasts of a pair of integers denoting a fraction f and ar exponent e (o 2
certamn base (say, x = f-2°). The third decision, based on the knowledge that
the data are to be stored in a computer, may lead to a binary, positional
rep-esentation of integers, and the final deciston could be to represent binary
digits by the direction of the magnetic flux in a magnetic storage device
Evidently, the first decision in this chain is manly influenced by the problem
situation, and the later ones are progressively dependent on the tool and 1t
technology Thus, it can hardly be required that a programmer decide on the
number representation to be employed or even on the storage device charac-
teristics These “lower-level decisions™ can be left to the designers of computer
equipment, who have the most information available on current technology
with which to make a sensible choice that will be acceptable for all (or almost
ally applications where numbers play a role.

In this context, the significance of programming languages becomes appar-

sre 1 INTRODUCTION 3

~nit. A programming language represents an abstract computer capable of
understanding the terms used in this Janguage, which may embody a certain
level of abstraction from the objects used by the real machine. Thus, the pro-
graromer who uses such a “higher-level” language will be freed (and barred)
from questions of number representation, if the number is an elementary
object 1n the realm of this language.

The importance of using a language that offers a convenient set of basic
abstractions common to most problems of data processing lies mainly in the
area of reliability of the resulting programs. It is easier to design a program
based on reasoning with familiar notions of numbers, sets, sequences, and
repetitions than on bits, “words,” and jumps. Of course, an actual computer
will represent all data, whether numbers, sets, or sequences, as a large mass
of bits. But this is irrelevant to the programmer as long as he does not have
to worry about the details of representation of his chosen abstractions and as
long as he can rest assured that the corresponding representation chosen by
the computer (o1 compiler) is reasonable for his purposes.

The closer the abstractions are to a given computer, the easier it is to make
a representation choice for the engineer or implementor of the language,
and the higher is the probability that a singie choice will be suitable for all
(or almost all) conceivable applications. This fact sets definite limits on the
degree of abstractions from a given real computer. For example, it would
not make sense to include geometric objects as basic data items in a general-
purpose language, since their proper representation will, because of its inher-
ent complexity, be largely dependent on the operations to be applied to these
objects. The nature and frequency of these operations wili, however, not be
known to the designer of a generakpurpose language and its compiler, and
any choice he makes may be inappropriate for some potential applications.

In this book these deliberations determine the choice of notation for the
descripdon of algorithims and their data.. Clearly, we wish to use familiar
notions of mathematics, such as numbers, sets, sequences, and so on, rather
than computer-dependent entities such as bitstrings. But equully clearly we
wish to use a notation for which efficient compilers are known to exisi.
It is equally unwise to use a closely machine-oriented and machine-dependent
janguage, as it is unhelpful ic describe computer programs in an abstract
notation which leaves problems of representation widely open.

The programi{@jng language PASCAL has been designed in an attempt to
" find a compromige between these extremes, and it is used throughout this
book [1.3 and 1.5). This language has been successfully implemented on
several computers, and it has been shown that the notation is sufficiently
close to real machines that the chosen features and their representatiors can
be clearly explained. The language is also sufficiently close to other languages,
particularly ALGOL 60, that the lessons taught here may equally well be
apphied in their use.

4 TUNDAMENTAL DATA STRUCTURES CHAP. 1

1.2. THE CONCEPT OF DATA TYPE

1n mathiematics it is customary to classify variables according to certain
important characteristics. Clear distinctions are made between real, complex,
and logical variables or between variables representing individual values, or
sets of values, or sets of sets, or between functions, functionals, sets of func-
tions. and so on. This notion of classification is equally impertant, if not more
important. in dats processing. We will adhere to the principle that every
consimt, variable, expression, or function is of a certain type. This type essen-
tially characierizes the set of values Lo which a constant belongs, or which
can ke assumed by a variable or expression, or which can be generated by a
function.

Tn mathematical texts the tvpe of 4 variable is useally deducible from the
typeface without consideration of context; this is not feasible in computer
programs. For there is usually one typeface commuonly available on computer
equipment {i e, Latin letters). The rule is therefore widely accepted thar the
associated tvpe is made explicit in a declaration of the constant, variable, or
function, and that this declaration textually precedes the application of that
constant, variable, or function. This rule is particularly sensible it one con-
siders the fact that a compiler has to make a choice of representation of the
object within the store of a computer. Evidently, the capacity of storage
allocated to a variable will have to be chosen according to the size of the
range of values that the variable may assume. If this information is known
to a compiler, so-called dynamic storage allocation can be avoided. This is
very often the key to an efficient realization of an algorithm.

The primary characteristics of the concept of type that is used throughout
this text, and that is embodied in the programming language PASCAL,
thus are the following [1.2]:

I. A data type determines the set of values to which a constant belongs. ot
which may be assumed by a variable or an expression, or which may be

~ generated by an operator or a function.

2. The type of a value denoted by a constant, variable, or expression may
be derived from its form or its deciaration without the necessity of execut-
ing the computational process.

3. bach operator or function expects arguments of a fixed type and yields
a result of a fixed type. If an operator adsmits arguments of several types
{(e.g., + is used for addition of both integers and real numbers), then the
type of the result can be determined from specific language rules.

As a consequence, a compiler may use this information on types.to check the
compatibility and legality of various constructs. For example, the assign-
neat of 2 Boolean (logical) value to an arithmetic (real) variable may be

sec. 1.2 THE CONCEPT OF DATA TYPE 5

detected without executing the program. This kind of redundancy ir: the pro-
gram text is extremely useful as an aid in the development of programs, and
it must be considered as the primary advantage of good high-level languages
over machine code (or symbolic assembly code). Evidently, the data will
ultimately be represented by a large number of binary digits, irrespective of
whether or not the program had initially been conceived in 2 high-level lan-
guage using the concept of type or in a typeless assembly code. To the com-
puter, the store is 2 homogeneous mass of bits without apparent structure.
But it is exactly this abstract structure which alone is enabling human pro-
grammers to recognize meaning in the monotonous landscape of a computer
store.

The theory presented in this book and the programming language
PASCAL specify certain methods of defining data types. In most cases new
data types are defined in terms of previously defined data types. Values of
such a type are usually conglomerates of component values of the previously
defined constituent types, and they are said to be structured. If there is only
one constituent type, that is, if all components are of the same coastituent
type, then it is known as the base type.

The number of distinct values belonging to a type T'is called the cardinality
of 7. The cardinality provides a measure for the amount of storage needed
to represent a variable x of the type T, denoted by x: 7.

Since constituent types may again be structured, entire hierarchies of
structures may be built up, but, obviously, the ultimate components of a
structure must be atomic. Therefore, it is necessary that a notation is provided
to introduce such primitive, unstructured types as well. A straightforward
method is that of enumeration of the values that are to constitute the type.
For example, in a program concerned with plane geometric figures, there
may be introduced a primitive type called shape, whose values may be denoted
by the identifiers rectangle, square, ellipse, circle. But apart from such pro-
grammer defined types, there will have to be some standard types that are
said to be predefined. They will usually include numbers and logical values.
If an ordering exists among the individual values, then the type is said to
be ordered or scalar. In PASCAL, all unstructured types are assumed to be
ordered; in the case of explicit enumeration, the vaiiues are assumed to
be ordered by their enumeration sequence.

With this tool in hand, it is possible to define primitive types and to build
conglomerates, structured types up to an arbitrary degree of nesting. In
practice, it is not sufficient to have only one general method of combining
constituent types into a structure. With due regard to practical problems of
representation and use, a general-purpose programming language must offer
several methods of structuring. In a mathematical sense, they may all be
equivalent; they differ in the operators available to construct their values and
to select components of these values. The basic structuring methods presented

o FUNTYAMENIAL DATA STRUCTURES CHAY 1

here are *he wrray. the 1ecoid, the ser, and the scquence (fill) More compli-
cated structures are not usually defined as *static” types. but are instead

dynamrcally " generated during *he execution of the program during wluch
thev may vary 1n size and shape Such structures ate the subject of Chap 4
and 1ncJude hists rings, trees, and general finmite graphs

Vanabies and data types are introduced 1n a program 1n order to be used
for computetion To this end a set of aperaters must be available. As with
data types, progiamming langueges offer a certamn number of primntive,
standard (atomic) operators. and a number of sttucturing methods by which
composite operations c¢in be defined 1 terms of the primitive operators.
The :ask of composition ot operaticns 1y often considered the heart of the
art of programming However, 1t will becomie evidert that the apprormate
composition of data 1s equally fundamental and essential.

The most important basic operators are comparison and assignment,
1e.. the test for equahty (and order 1 the case of ordered types) and the com-
mand to enforce equality. The fundamental difference between these two
operations 1s emphasized by the clear distinction 1n their denotation through-
out this text (although 1t is unfortunately obscured in such widely used
programming languages as Fortran and PL/I. which use the equal sign as
assignment operator).

Test for equaltty: x =y
Assignment to x° x:— y

These fundamental operators atre defined for most data types. but it should be
noted that their execution may involve a substantial amount of computational
effort if the data are large and highly structured

Apart from test of equality (or order) and assignment, a class of funda-
mental and imphicitly defined operators are the so-called transfer operators.
They are mapping data types onto ~ther deta types. They are particularly
important in connection with structured t*pes Stiuctured values are gen-
erated from thetr component values by so-culled constructors, and the coms-
ponent values are extracted by so-called selectors Constructors and selectors
are thus transfer operators mapping constituent types into structured types
and vice versa Every structur.ng method owns its particular pair of constiuc-
tov< and selecters that clearly differ in their denotation

Standard prirmiuve data types also require a set of standard prmitive
operators Thus, along witk the standard data types of numbers and logical
values, we also introduce the conventional operations of arithmetic and
propositional logic

1.3. PRIMITIVE DATA TYPES

In many programs integers are used when numerical properties arc not
involved and when the integer represents a chewe from a small number of

