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Foreword

In this book the authors determine the maximal subgroups of all the finite
classical groups of dimension 12 or less. This work fills a long-standing gap in
the literature. Behind this gap there is a story which I am pleased to have the
opportunity to tell.

The completion of the classification of finite simple groups was first an-
nounced in the early 1980s. It was clear then (and before) that for many appli-
cations of the classification one would need detailed knowledge of the maximal
subgroups of the simple groups and of their automorphism groups. Around that
time, I gave a Part III course at Cambridge about the classification and its im-
pact. Full of enthusiasm, I set a fearsome exam — I remember giving it to John
Conway to check, and him saying that he couldn’t do any of the questions, but
he thought it was probably OK. The second highest mark was 18%, scored by
a rather strong student. The top mark was 97%, scored by Peter Kleidman, a
young American.

Soon afterwards, Kleidman started as my first research student. Michael As-
chbacher had just published his fundamental theorem on maximal subgroups
of the finite classical groups. The time seemed right to attempt to use this to
determine all the maximal subgroups of the classical groups of low dimensions
(up to 20, say, I thought optimistically). This was Kleidman’s initial project. As
it turned out, in his thesis he solved many other maximal subgroup problems,
and this project occupied just one chapter. Nevertheless it was rather an inter-
esting chapter, consisting of tables of all the maximal subgroups of finite simple
classical groups of dimension up to 12. No proofs were given, just an outline of
the strategy and a few examples of how the calculations were performed.

After he had graduated, Kleidman and I wrote a book on the subgroups of
the finite classical groups, which was an analysis of the structure, conjugacy
and maximality of the subgroups arising in Aschbacher’s theorem now known as
geometric subgroups. For the maximality questions we assumed that the dimen-

viii



Preface

The aim of this book is to classify the maximal subgroups of the almost simple
finite classical groups of dimension at most 12. We also include tables describing
the maximal subgroups of the almost simple finite exceptional groups that have
faithful representations of degree at most 12.

A group G is simple if it has order greater than 1 and has no normal
subgroups other than the trivial subgroup and G itself, and is almost simple if
S < G < Aut S for some non-abelian simple group S. A group is perfect if it is
equal to its derived group. A group G is called quasisimple if G is perfect and
GG modulo its centre is a non-abelian simple group.

The study and classification of the (maximal) subgroups of the finite sim-
ple groups and their variations has a long history, and the completion of the
classification of the finite simple groups provided further motivation.

The term ‘classical group’ is used frequently in the literature, but it is rarely,
if ever, defined precisely. We shall not attempt a formal definition here, and we
shall avoid using it in a precise sense. Our general intention is to use it very
inclusively. We shall certainly regard all of the named groups (like GL,(q),
O¢ (q), PCSp,,(g), etc.) in Table 1.2 as classical groups, but we also include
among the classical groups arbitrary subgroups between the Q-groups and the
A-groups in the table, and also quotients of the groups in the first of each of the
paired rows in the table by arbitrary subgroups of the scalars. Furthermore, we
include all almost simple extensions of the simple classical groups.

Maximal subgroups of classical groups. In [1], Aschbacher proved a funda-
mental theorem that describes the subgroups of almost all of the finite almost
simple classical groups (the only exceptions are certain extensions of S4(2°)
and O} (g)). This theorem divides these subgroups into nine classes. The first
eight of these consist roughly of groups that preserve some kind of geometric
structure; for example the first class consists (roughly) of the reducible groups,
which fix a proper non-zero subspace of the vector space on which the group

X



Foreword 1x

sion was more than 12, and it was the intention that Kleidman would extend
and write up his thesis work on the low dimensions as a separate book. Indeed,
this project was accepted as a volume to appear in the Longman Research
Notes series, and has been referred to as such in many articles. Unfortunately,
he did not write this book, and left mathematics at the age of about thirty to
pursue other interests such as working on Wall Street and producing Hollywood
movies.

The non-appearance of Kleidman’s book left a yawning gap in the literature
for over twenty years. We are fortunate indeed that a number of years ago the
authors of this volume took it upon themselves to fill this gap. They have done
this in marvellously complete fashion, presenting the material with great clarity
and attention to detail. Full proofs and comprehensive background material are
given, making the book easily accessible to graduate students. It should also be
said that their results go quite a way beyond Kleidman’s thesis, in that they
handle almost simple classical groups rather than just simple ones, which is
important for applications.

It is marvellous to have this volume on the bookshelf where previously there
was such an evident space, and I congratulate the authors on their achievement.

Martin Liebeck
Imperial College London
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acts naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by %y or ., consists (roughly) of
those subgroups that are not of geometric type and which, modulo the subgroup
of scalar matrices, are almost simple. An alternative proof of Aschbacher’s the-
orem, as a corollary to a version of the theorem for algebraic groups, can be
found in [82]. We present a detailed version of Aschbacher’s theorem, based
on the treatment in [66], in Section 2.2. An interesting version of Aschbacher’s
theorem is presented in [91], which emphasises the links between the subgroup
structure of the finite classical groups and of the algebraic groups of Lie type.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the almost simple finite classical
groups of dimension greater than 12. In this book, we shall extend the work of
Kleidman and Liebeck to handle dimensions at most 12, and also classify the
maximal subgroups of these groups that are in Class .#.

With the exception of Kleidman’s work [62] on €4 (¢), and classifications
of Kleidman [62, 64, 63] and Cooperstein [14] of maximal subgroups of some
of the exceptional groups of Lie type, which we simply cite and reproduce in
our tables, our approach in this book has been to use these previous classifi-
cations for checking purposes only: our proofs make no use of the references
below, although we have compared our results with them and, where there are
differences, verified that our tables are correct.

The most complete previous work on low-dimensional classical groups is
undoubtedly Peter Kleidman’s PhD thesis [61], where he presents a classifica-
tion, without proof, of the maximal subgroups of the simple classical groups
in dimensions up to 12. This is a remarkable achievement. Kleidman intended
to publish a subsequent book, with the same goal as ours: the classification of
maximal subgroups of the almost simple classical groups in dimension up to 12.
Unfortunately, this has not been published, and the present work is an attempt
to carry out Kleidman’s plan.

We base the following historical summary on the surveys by King [60], and
Kleidman and Liebeck [65]. The complete description of the subgroup structure
of the groups La(g) is usually attributed to Dickson [22], but this topic was also
investigated by E. H. Moore [94] and Wiman [115]. The subgroups of L3(g) were
described by Mitchell for ¢ odd [92] and then by Hartley for ¢ even [40]. In
both cases the subgroups that lie in Us(,/g) were identified. A more modern
treatment of subgroups of L3(g) is provided by Bloom in [3]. The maximal
subgroups of L4(gq) for even ¢ were listed independently by Mwene [95] and
Zalesskii [116]. A partial classification for odd ¢ can be found in [96] and,
independently, for p > 5 in [117]. Further results on this case can be found
in [59, Section 5]. Mitchell classified the maximal subgroups of S4(¢) for odd
q in [93]. Flesner [26, 27] partially classified the maximal subgroups of S4(2°).
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The maximal subgroups of Ls(g) were determined by Di Martino and Wagner
for ¢ odd [23], and independently by Wagner [110] and Zalesskii [116] for ¢
even. Kondrat’ev classified the quasisimple absolutely irreducible subgroups of
GLg(q) [71]. There is a brief survey of many of these results in [72].

For higher dimensions, many people have concentrated on the case q = 2.
In 1984, Darafsheh classified the maximal subgroups of GLg(2) [21], building
on Harada and Yamaki’s paper [39], which classified the insolvable irreducible
subgroups of GL,(2) with n < 6. The subgroups of GL,,(2) for n < 10 were
studied extensively by Kondrat’ev: see [67, 68, 69, 70].

In the work of King and others (see [60] and the references therein) a differ-
ent approach is taken: rather than concentrating on a family of almost simple
groups, such as those with socle Lg(g), one concentrates on a family of poten-
tially maximal subgroups, such as those of type I'L,, /2(q2) in SL,(¢q), and tries
to determine maximality. A great deal is known in this direction: see the results
cited in [60], together with [15, 16, 17, 99], amongst others. Again, we have not
used these works in our proofs, but have compared our results with them: we
mention them in the relevant sections of Chapters 2, 3 and 6 of this book.

An approach which is slightly orthogonal to our present purposes, but which
has been used as a tool in the proof of many deep theorems, is to classify
subgroups of classical groups containing elements of specified orders. We shall
not use these results, so will not provide an extensive list of papers, but the
interested reader could start by looking at [35, 36] and the references therein.

Maximal subgroups of non-classical simple groups. See [83, 114] for an
excellent survey and introduction, respectively, on the whole of this field. The
ATLAS [12] is also an essential reference in this area.

For the alternating groups, the O’Nan—Scott Theorem (see, for example,
Chapter 4 of [8]) provides a subgroup classification similar to, but much simpler
than, the Aschbacher classification of matrix groups over finite fields, and results
of Liebeck, Praeger and Saxl [78] enable us to determine maximality. As in the
case of finite matrix groups, we have a final class of almost simple primitive
permutation groups which need to be listed individually by degree, and these
lists are currently complete up to degree 4095 [18, 98].

The maximal subgroups of the almost simple exceptional Lie type groups
have not yet been fully classified, although a great deal is known about them.
A discussion of the overall strategy for their classification, and a brief summary
of the main theorems in this area, appear in [91, Chapter 29]; whilst further
references to the literature can be found in [66, Table 1.3.B]. In particular,
the maximal subgroups of all of the simple, and most of the almost simple
groups of this type with representations of degree up to 12 have been classified:
see [106, Section 15] for the Suzuki groups *Ba(q), [76, 64] for the Ree groups
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2Ga(q), [2, 14, 64] for Ga(g) and [63] for 3D4(q). In this book we extend these
classifications to the remaining almost simple groups with representations of
degree at most 12.

The sporadic groups can be handled on a case-by-case basis. Most of the
necessary information is available, including references to the literature, in [12]
or, more usefully for computational purposes, in [111]. At the time of writing,
all of the maximal subgroups of the almost simple groups with socle a sporadic
group are known except for almost simple maximal subgroups of the Monster
whose socle is one of a small list of groups. See [111] for a description of the state
of play: note that it has recently been shown by R.A. Wilson that Lo(41) is a
maximal subgroup of the Monster, correcting an earlier error in the literature.

Computational applications. We were partly motivated to carry out this
classification by its applications to computational group theory. In [9], results
of Kovacs, Aschbacher and Scott dating from the mid 1980s are used to reduce
the computation of the maximal subgroups of a general finite group G to the
case when G is almost simple. Polynomial-time algorithms for constructing the
geometric-type maximal subgroups of the classical groups (in all dimensions)
are presented in [45] for the linear, unitary and symplectic groups, and in [46]
for the orthogonal groups, and they have been implemented in MAGMA [5].

The Class . subgroups arising from representations of almost simple groups
in their defining characteristic are generally moderately straightforward to con-
struct using standard functionality for computing with modules over groups.
Most of the quasisimple Class . subgroups that are not in defining characteris-
tic can be constructed by restricting a representation of a quasisimple group in
characteristic 0 to the required finite field. The associated almost simple groups
can be constructed over the finite field from a knowledge of the relevant group
automorphisms and the computation of module isomorphisms.

Various databases of characteristic 0 representations are available either
directly on the web, or via computer algebra systems such as GAP [29] and
MAGMA. A facility of this type [111] has been under construction and con-
tinuous development for several years now. More recently, Steel [103] has con-
structed almost all of the characteristic 0 representations in [42] of quasisimple
groups in dimensions up to 250. We used data from these databases to carry
out some of the calculations needed to complete the classification.

Although the bulk of the arguments used in our classification theorems are
theoretical, a substantial number of them make use of computer calculations.
These calculations require only small amounts of computer time (generally
at most a few seconds) and could be easily carried out using existing func-
tionality and databases in either GAP or MAGMA. The MAGMA commands
for each of these individual calculations are given in the files on the webpage
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http://www.cambridge.org/9780521138604, to enable the user to verify them
easily. Whenever we use such a calculation in a proof in this book, we refer to
it as a “computer calculation” in the text, and direct the user to the individual
online file that contains the commands to carry it out. The files have names like
4134d8calc, which contains calculations with the 8-dimensional characteristic
0 representation of the group 4'L3(4). The matrices defining the images of these
representations are stored in data files, which are also on the website, and are
accessed by the commands that carry out the calculations.

We shall assume that the reader has a general knowledge of group theory
and of group representation theory as might be acquired from advanced un-
dergraduate courses on these topics. Some knowledge of the general theory of
classical groups over finite fields and of their associated bilinear, sesquilinear
and quadratic forms would also be helpful, because we shall only briefly sum-
marise what we need for this book. Good sources are the books by Rob Wilson
[114] (which also includes a great deal of information about maximal subgroups
of simple groups), Don Taylor [108] or Chapter 2 of [66]. We do not require any
familiarity with algebraic groups, but the interested reader should consult [91]
for an introduction which is especially well-suited to our current purposes.

Finally, in any classification project of this scale, it is inevitable that some
mistakes will have slipped into our tables. At the time of publication, we know
of no such errors, but an errata list has been created at

http://www.cambridge.org/9780521138604,

and we shall keep this up to date. We would be extremely grateful to be in-
formed of any errata.
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Introduction

1.1 Background

Given a group GG, we write Soc G for the socle of G: the subgroup of G generated
by its minimal normal subgroups. A group G is almost simple if S < G < Aut S
for some non-abelian simple group S. Note that S = Soc G. A group G is perfect
if G = G’. A group G is quasisimple if G is perfect and G/Z(G) is a non-abelian
simple group.

Aschbacher [1] proves a classification theorem, which subdivides the sub-
groups of the finite classical groups into nine classes. The first eight of these
consist roughly of groups that preserve some kind of geometric structure; for
example the first class, %}, consists (roughly) of the reducible groups, which
fix a proper non-zero subspace of the vector space on which the group acts
naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by %y or .#, consists (roughly)
of those absolutely irreducible subgroups that are not of geometric type and
which, modulo the central subgroup of scalar matrices, are almost simple.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the finite classical groups of
dimension greater than 12. More precisely, they classify the conjugacy classes
of maximal subgroups H of those almost simple groups G for which Q :=
Soc G = Q/Z(Q) for some classical quasisimple group 2, with HNQ = K/Z()
for a subgroup K of € of geometric type.

In this book, we determine the maximal subgroups of all such almost sim-
ple groups G with dimension at most 12. For the subgroups of geometric type,
Kleidman and Liebeck proved that their lists contain all such maximal sub-
groups even in dimensions at most 12. But their determination of when these
subgroups are actually maximal applies only to dimensions greater than 12. It
turns out that they are nearly all maximal, with just a few exceptions in small
dimensions: all of the exceptions are in dimension at most 8.
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We do not, however, restrict ourselves to the subgroups of geometric type,
and include those subgroups in Aschbacher Class . in our classification. It is
a feature of the groups in this class that they are not, as far as we know, sus-
ceptible to a uniform description across all dimensions, but can only be listed
for each individual dimension and type of classical group. Fortunately, lists
are available of all irreducible representations of degree up to 250 of all finite
quasisimple groups G. These have been compiled by Liibeck [84] for represen-
tations of G in defining characteristic (when G is a group of Lie type), and by
Hifl and Malle [42] for all other representations. These lists provide us with a
complete set of candidates for the quasisimple normal subgroups S of maximal
subgroups in Class .¢ of the finite classical groups of dimension up to 250.

We are, however, left with two major problems. Firstly, in order to find the
almost simple maximal subgroups of the almost simple classical groups G =
G/Z(92), we need to determine which of the automorphisms of the simple groups
S/Z(S) in the lists of candidates can be adjoined within G. Secondly, we need
to determine which of the candidates that we construct are actually maximal
subgroups of the almost simple groups. Indeed, our approach to the project as
a whole follows the same general pattern as [66]: first we find the candidates
for the maximal subgroups within each of the nine Aschbacher classes, then
we determine which are maximal within their own class, and finally we decide
maximality itself by identifying cases in which maximal groups in one class are
properly contained in a subgroup in another class.

The OF (¢) case is handled in detail in [62], so we shall not repeat that work
here: we will simply reproduce the table of maximal subgroups from [62], but
in the format we are using for the remainder of our tables.

Structure of this book. In the remainder of this chapter we present basic
results on the structure and representations of simple groups; this material will
be required both for the study of geometric type groups and of groups in Class
.. Topics covered include: novelty maximal subgroups; finite fields; sesquilin-
ear and quadratic forms, including the specification of our standard forms;
introduction to the classical groups, including the specification of our standard
outer automorphisms; some relevant representation theory; tensor products; ex-
ceptional properties of various small classical groups; permutation and matrix
representations of the classical groups; properties of the natural matrix repre-
sentations of the classical groups; Zsigmondy primes; quadratic reciprocity.

In Chapter 2 we first state our main theorem, Theorem 2.1.1. Then in Sec-
tion 2.2 we introduce the types of geometric subgroups: these are families of
subgroups with the property that if H is a geometric maximal subgroup of
a quasisisimple classical group, then H is a member of one of these families.
For each geometric Aschbacher class, we define the corresponding types, give



