

Mixed-Signal Circuits

Thomas Noulis

Mixed-Signal Circuits

Thomas Noulis

Intel Corporation, Munich, Germany

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20150421

International Standard Book Number-13: 978-1-4822-6062-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Mixed-signal circuits / Thomas Noulis, editor.

pages cm. -- (Devices, circuits, and systems; 46)

"A CRC title."

Includes bibliographical references and index.

ISBN 978-1-4822-6062-5 (alk. paper)

1. Mixed signal circuits. 2. Integrated circuits. I. Noulis, Thomas, editor.

TK7874.55.M59 2016 621.3815--dc23

2015015695

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Mixed-Signal Circuits

Devices, Circuits, and Systems

Series Editor

Krzysztof Iniewski CMOS Emerging Technologies Research Inc., Vancouver, British Columbia, Canada

PUBLISHED TITLES:

Atomic Nanoscale Technology in the Nuclear Industry Taeho Woo

Biological and Medical Sensor Technologies Krzysztof Iniewski

Building Sensor Networks: From Design to Applications Ioanis Nikolaidis and Krzysztof Iniewski

Circuits at the Nanoscale: Communications, Imaging, and Sensing Krzysztof Iniewski

> CMOS: Front-End Electronics for Radiation Sensors Angelo Rivetti

Design of 3D Integrated Circuits and Systems Rohit Sharma

Electrical Solitons: Theory, Design, and Applications David Ricketts and Donhee Ham

> **Electronics for Radiation Detection** Krzysztof Iniewski

Electrostatic Discharge Protection of Semiconductor Devices and Integrated Circuits

Juin J. Liou

Embedded and Networking Systems: Design, Software, and Implementation Gul N. Khan and Krzysztof Iniewski

Energy Harvesting with Functional Materials and Microsystems Madhu Bhaskaran, Sharath Sriram, and Krzysztof Iniewski

Gallium Nitride (GaN): Physics, Devices, and Technology Farid Medidoub

Graphene, Carbon Nanotubes, and Nanostuctures: Techniques and Applications James E. Morris and Krzysztof Iniewski

High-Speed Devices and Circuits with THz Applications Jung Han Choi

PUBLISHED TITLES:

High-Speed Photonics Interconnects Lukas Chrostowski and Krzysztof Iniewski

High Frequency Communication and Sensing: Traveling-Wave Techniques

Ahmet Tekin and Ahmed Emira

Integrated Microsystems: Electronics, Photonics, and Biotechnology Krzysztof Iniewski

> Integrated Power Devices and TCAD Simulation Yue Fu, Zhanming Li, Wai Tung Ng, and Johnny K.O. Sin

Internet Networks: Wired, Wireless, and Optical Technologies

Krzysztof Iniewski

Labs on Chip: Principles, Design, and Technology

Eugenio lannone

Laser-Based Optical Detection of Explosives

Paul M. Pellegrino, Ellen L. Holthoff, and Mikella E. Farrell

Low Power Emerging Wireless Technologies Reza Mahmoudi and Krzysztof Iniewski

Medical Imaging: Technology and Applications Troy Farncombe and Krzysztof Iniewski

> Metallic Spintronic Devices Xiaobin Wang

MEMS: Fundamental Technology and Applications Vikas Choudhary and Krzysztof Iniewski

Micro- and Nanoelectronics: Emerging Device Challenges and Solutions

Tomasz Brozek

Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit

Eric Lagally

MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing

Lars Torsten Berger, Andreas Schwager, Pascal Pagani, and Daniel Schneider

Mobile Point-of-Care Monitors and Diagnostic Device Design
Walter Karlen

Multisensor Data Fusion: From Algorithm and Architecture Design to Applications

Hassen Fourati

Nano-Semiconductors: Devices and Technology Krzysztof Iniewski

Nanoelectronic Device Applications Handbook James E. Morris and Krzysztof Iniewski

PUBLISHED TITLES:

Nanopatterning and Nanoscale Devices for Biological Applications Šeila Selimovic

> Nanoplasmonics: Advanced Device Applications James W. M. Chon and Krzysztof Iniewski

Nanoscale Semiconductor Memories: Technology and Applications Santosh K. Kurinec and Krzysztof Iniewski

Novel Advances in Microsystems Technologies and Their Applications

Laurent A. Francis and Krzysztof Iniewski

Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies

Krzysztof Iniewski

Optical Fiber Sensors: Advanced Techniques and Applications
Ginu Rajan

Optical Imaging Devices: New Technologies and Applications

Dongsoo Kim and Ajit Khosla

Organic Solar Cells: Materials, Devices, Interfaces, and Modeling
Qiquan Qiao

Radiation Detectors for Medical Imaging

Jan S. Iwanczyk

Radiation Effects in Semiconductors

Krzysztof Iniewski

Reconfigurable Logic: Architecture, Tools, and Applications
Pierre-Emmanuel Gaillardon

Semiconductor Radiation Detection Systems
Krzysztof Iniewski

Smart Grids: Clouds, Communications, Open Source, and Automation

David Bakken

Smart Sensors for Industrial Applications

Krzysztof Iniewski

Soft Errors: From Particles to Circuits *Iean-Luc Autran and Daniela Munteanu*

Solid-State Radiation Detectors: Technology and Applications
Salah Awadalla

Technologies for Smart Sensors and Sensor Fusion Kevin Yallup and Krzysztof Iniewski

Telecommunication Networks
Eugenio Iannone

Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits
Sandeep K. Goel and Krishnendu Chakrabarty

PUBLISHED TITLES:

VLSI: Circuits for Emerging Applications

Tomasz Wojcicki

Wireless Technologies: Circuits, Systems, and Devices Krzysztof Iniewski

Wireless Transceiver Circuits: System Perspectives and Design Aspects
Woogeun Rhee

FORTHCOMING TITLES:

Advances in Imaging and Sensing

Shuo Tang, Dileepan Joseph, and Krzysztof Iniewski

Analog Electronics for Radiation Detection
Renato Turchetta

Cell and Material Interface: Advances in Tissue Engineering, Biosensor, Implant, and Imaging Technologies

Nihal Engin Vrana

Circuits and Systems for Security and Privacy

Farhana Sheikh and Leonel Sousa

CMOS Time-Mode Circuits and Systems: Fundamentals and Applications
Fei Yuan

Ionizing Radiation Effects in Electronics: From Memories to Imagers

Marta Bagatin and Simone Gerardin

Mixed-Signal Circuits

Thomas Noulis

Magnetic Sensors: Technologies and Applications

Kirill Poletkin

MRI: Physics, Image Reconstruction, and Analysis

Angshul Majumdar and Rabab Ward

Nanoelectronics: Devices, Circuits, and Systems
Nikos Konofaos

Nanomaterials: A Guide to Fabrication and Applications

Sivashankar Krishnamoorthy, Krzysztof Iniewski, and Gordon Harling

Physical Design for 3D Integrated Circuits
Aida Todri-Sanial and Chuan Seng Tan

Power Management Integrated Circuits and Technologies

Mona M. Hella and Patrick Mercier

Radio Frequency Integrated Circuit Design Sebastian Magierowski

Silicon on Insulator System Design

Bastien Giraud

FORTHCOMING TITLES:

Semiconductor Devices in Harsh Conditions *Kirsten Weide-Zaage and Malgorzata Chrzanowska-Jeske*

Smart eHealth and eCare Technologies Handbook Sari Merilampi, Lars T. Berger, and Andrew Sirkka

Structural Health Monitoring of Composite Structures Using Fiber Optic Methods

Ginu Rajan and Gangadhara Prusty

Terahertz Sensing and Imaging: Technology and Devices
Daryoosh Saeedkia and Wojciech Knap

Tunable RF Components and Circuits: Applications in Mobile Handsets

Jeffrey L. Hilbert

Wireless Medical Systems and Algorithms: Design and Applications
Pietro Salvo and Miguel Hernandez-Silveira

Preface

This book addresses mixed-signal integrated circuits using advanced design techniques to enable digital circuits and sensitive analog circuits to co-exist without any compromise. Different related topics are addressed, such as the advanced process technology to address the performance challenges associated with developing these complex mixed-signal circuits, the related blocking points in the industry design flow, and the general validation of the proposed solutions and implementations. Development and implementation of innovative methodologies to move analog into the digital domain quickly, minimizing and eliminating common trade-offs between performance, power consumption, simulation time, verification, size, and cost containment are also discussed.

Specifically, in this book, the state of the art in integrated circuit design in the context of mixed-signal applications is addressed. New, exciting opportunities in different areas like wireless communications, data networking, and simulation and verification techniques are presented. Design concepts for very low-power performance and approaches for high-speed interfaces, PLL, VCOs, ADC converters, and biomedical filters are described. Respective parts of a full system-on-chip (SoC), from the digital parts untill the baseband blocks, the RF circuitries, the ESD structures and the built-in self-test architectures are provided.

Coverage includes advanced crucial topics like signal integrity, large-scale simulation, and verification and testing. Extremely hot modeling topics are also addressed such as reliability, variability, and crosstalk that define presilicon design methodology and trends and are the main research items for all industry leading companies involved in wireless applications.

The book is written by a mixture of top industrial experts and key academic professors and researchers. Practical enough to understand how these technologies work, but not a product manual and, at the same time, scientific enough but not pure academic theory.

This book is a must for anyone involved in mixed-signal circuit design for future technologies. The intended audience is engineers with advanced integrated circuit background working in the semiconductor industry. This book can also be used as a recommended reading and supplementary material in a graduate course curriculum and, in general, the intended audience is professionals working in the integrated circuit design field.

I hope you enjoy reading this book as much as we have enjoyed writing it!

Thomas Noulis

Editor

March 30, 2015

xii Preface

MATLAB® and Simulink are registered trademarks of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA

Tel: 508 647 7000 Fax: 508-647-7001

E-mail: info@mathworks.com Web: www.mathworks.com

Editor

Thomas Noulis is a staff RFMS engineer at Intel Corporation in the Mobile & Communications Group in Munich, Germany, specializing in circuit design, modeling-characterization, crosstalk, and SoC product active area minimization. Before joining Intel, from May 2008 to March 2012, Dr. Noulis was with HELIC Inc., initially as an analog/RF IC designer, and then as an R&D engineer specializing in substrate coupling, signal and noise integrity, and analog/RFIC design. Thomas Noulis earned a BSc in physics (2003), an MSc in electronics engineering (2005), and a PhD in the Design of Signal Processing Integrated Circuits (2009) from the Aristotle University of Thessaloniki, Greece, and in collaboration with LAAS (Laboratoire d'Analyse et d'Architectures des Systèmes), Toulouse, France. During 2004-2009, he participated as principal researcher in multiple European and national research projects related to space application and nuclear spectroscopy IC design, while between 2004 and 2010, he also collaborated as a visiting-adjunct professor with universities and technical institutes. Dr. Noulis is the author of more than 30 publications, journals, conferences, and scientific book chapters. He holds one French and World patent. His work has received more than 50 citations. He is an active reviewer of multiple international journals and has given multiple invited presentations at European research institutes and international conferences on crosstalk and radiation detection IC design. Dr. Noulis has received awards for his research at conferences and by research organizations and can be reached at t.noulis@gmail.com.

Contributors

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas Austin, Texas

Marise Bafleur

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) Toulouse, France

Sotiris Bantas

Centaur Technologies Volos, Greece

Manuel Barragán

Laboratoire TIMA
Centre National de la Recherche
Scientifique
Grenoble, France

Patrice Besse

Freescale Semiconductor Inc. Toulouse, France

Fabrice Caignet

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) Toulouse, France

Francis Calmon

Institut des Nanotechnologies de Lyon Université de Lyon Lyon, France

Abhijit Chatterjee

Electrical and Computer
Engineering
Georgia Institute of Technology
Atlanta, Georgia

Ilias Chlis

Tyndall National Institute and Electrical and Electronic Engineering School of Engineering University College Cork Cork, Ireland

Michael G. Dimopoulos

Laboratoire TIMA Université Grenoble Alpes Grenoble, France

Ricardo Doldán

ARQUIMEA DEUTSCHLAND GmbH Frankfurt (Oder), Germany

Ikhwana Elfitri

Department of Electrical Engineering Andalas University Padang, Indonesia

Nestor Evmorfopoulos

Department of Computer Science University of Thessaly Volos, Greece xvi Contributors

Rafaella Fiorelli

Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC) Universidad de Sevilla Seville, Spain

Antonio Ginés

Instituto de Microelectrónica de Seville (IMSE-CNM-CSIC) Universidad de Sevilla Seville, Spain

Christian Gontrand

Institut des Nanotechnologies de Lyon Université de Lyon Lyon, France

Alkis Hatzopoulos

Department of Electrical and Computer Engineering Aristotle University of Thessaloniki Thessaloniki, Greece

Farooq A. Khanday

Department of Electronics and Instrumentation Technology University of Kashmir Srinagar, Jammu, and Kashmir, India

Jean-Phillppe Laine

Freescale Semiconductor Inc. Toulouse, France

Jean-Etienne Lorival

Institut des Nanotechnologies de Lyon Université de Lyon, INSA- Lyon, CNRS-UMR Villeurbanne, France

Yiorgos Makris

Department of Electrical
Engineering
Erik Jonsson School of Engineering
and Computer Science
University of Texas
Dallas, Texas

Dzmitry Maliuk

Quantlab Financial LLC Houston, Texas

Lampros Mountrichas

Electronics Laboratory of the Physics Department Aristotle University of Thessaloniki Thessaloniki, Greece

Nicolas Nolhier

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) Toulouse, France

Georgios D. Panagopoulos

Intel Mobile Communications GmbH Munich, Germany

Domenico Pepe

Tyndall National Institute Cork, Ireland

Eduardo Peralías

Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC) Universidad de Sevilla Seville, Spain

Costas Psychalinos

Physics Department University of Patras Rio Patras, Greece Contributors xvii

Woogeun Rhee

Institute of Microelectronics Tsinghua University Beijing, China

Adoración Rueda

Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC) Universidad de Sevilla Seville, Spain

Stylianos Siskos

Electronics Laboratory of the Physics Department Aristotle University of Thessaloniki Thessaloniki, Greece

Mani Soma

Electrical Engineering Department University of Washington Seattle, Washington

Alexios Spyronasios

Dialog Semiconductor GmbH Stuttgart, Germany

George Stamoulis

Department of Computer Science University of Thessaly Volos, Greece

Haralampos-G. Stratigopoulos

Sorbonne Universités Paris, France

Fengyuan Sun

Electronics Department Northwestern Polytechnical University Xi'an, China

Georgia Tsirimokou

Physics Department University of Patras Rio Patras, Greece

Olivier Valorge

EASII-IC Electronics Design Center Lyon, France

Diego Vázquez

Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC) Universidad de Sevilla Seville, Spain

Alberto Villegas

Innovaciones Microelectrónicas S.L. (Anafocus, E2V) Seville, Spain

Zhihua Wang

Institute of Microelectronics Tsinghua University Beijing, China

Liming Xiu

TAF Microelectronics Dallas, Texas

Ni Xu

Institute of Microelectronics Tsinghua University Beijing, China

Domenico Zito

Tyndall National Institute and Electrical and Electronic Engineering School of Engineering University College Cork Cork, Ireland