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Foreword

This book is an outgrowth of my Introduction to Differentiable Manifolds
(1962) and Differential Manifolds (1972). Both 1 and my publishers felt it
worth while to keep available a brief introduction to differential manifolds.

The book gives an introduction to the basic concepts which are used in
differential topology, differential geometry, and differential equations. In dif-
ferential topology, one studies for instance homotopy classes of maps and
the possibility of finding suitable differentiable maps in them (immersions,
embeddings, isomorphisms, etc.). One may also use differentiable structures
on topological manifolds to determine the topological structure of the
manifold (for example, a la Smale [Sm 67]). In differential geometry, one
puts an additional structure on the differentiable manifold (a vector field, a
spray, a 2-form, a Riemannian metric, ad lib.) and studies properties con-
nected especially with these objects. Formally, one may say that one studies
properties invariant under the group of differentiable automorphisms which
preserve the additional structure. In differential equations, one studies vec-
tor fields and their integral curves, singular points, stable and unstable
manifolds, etc. A certain number of concepts are essential for all three, and
are so basic and elementary that it is worthwhile to collect them together so
that more advanced expositions can be given without having to start from
the very beginnings. The concepts are concerned with the general basic
theory of differential manifolds. My Fundamentals of Differential Geometry
(1999) can then be viewed as a continuation of the present book.

Charts and local coordinates. A chart on a manifold is classically a rep-
resentation of an open set of the manifold in some euclidean space. Using a
chart does not necessarily imply using coordinates. Charts will be used sys-
tematically.
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I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when inte-
grating differential forms, because the dx; A --- A dx,. corresponds to the
dxi - --dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. I
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

Since this book is intended as a text to follow advanced calculus, say at
the first year graduate level or advanced undergraduate level, manifolds are
assumed finite dimensional. Since my book Fundamentals of Differential
Geometry now exists, and covers the infinite dimensional case as well, read-
ers at a more advanced level can verify for themselves that there is no es-
sential additional cost in this larger context. I am, however, following here
my own admonition in the introduction of that book, to assume from the
start that all manifolds are finite dimensional. Both presentations need to be
available, for mathematical and pedagogical reasons.

New Haven 2002 Serge Lang
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. My books on analysis [La83/97], [La 93] give a self-contained
and complete treatment. We summarize basic facts of the differential
calculus. The reader can actually skip this chapter and start immediately
with Chapter II if the reader is accustomed to thinking about the de-
rivative of a map as a linear transformation. (In the finite dimensional
case, when bases have been selected, the entries in the matrix of this
transformation are the partial derivatives of the map.) We have repeated
the proofs for the more important theorems, for the ease of the reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, euclidean vector spaces and linear
maps, open subsets of euclidean spaces and differentiable maps, differ-
entiable manifolds and differentiable maps, vector bundles and vector
bundle maps, topological spaces and continuous maps, sets and just plain
maps. In an arbitrary category, maps are called morphisms, and in fact
the category of differentiable manifolds is of such importance in this book
that from Chapter II on, we use the word morphism synonymously with
differentiable map (or p-times differentiable map, to be precise). All other
morphisms in other categories will be qualified by a prefix to indicate the
category to which they belong.
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I, §1. CATEGORIES

A category is a collection of objects {X, Y,...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) — Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X', Y') are disjoint unless
X=X and Y =Y, in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X, Y) are called morphisms, and we write fre-
quently f: X — Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

Elements of Mor(X, X) are called endomorphisms of X, and we write

Mor(X, X) = End(X).

For a more extensive description of basic facts about categories, see my
Algebra [La 02], Chapter I, §1. Here we just remind the reader of the
basic terminology which we use. The main categories for us will be:

Vector spaces, whose morphisms are linear maps.

Open sets in a finite dimensional vector space over R, whose morphisms
are differentiable maps (of given degree of differentiability, C° C',...,
(BL)]

Manifolds, with morphisms corresponding to the morphisms just
mentioned. See Chapter II, §l.

In any category, a morphism f: X — Y is said to be an isomorphism
if it has an inverse in the category, that is, there exists a morphism
g: Y — X such that fg and gf are the identities (of ¥ and X respectively).
An isomorphism in the category of topological spaces (whose morphisms
are continuous maps) has been called a homeomorphism. We stick to the
functorial language, and call it a topological isomorphism. In general, we
describe the category to which a morphism belongs by a suitable prefix. In
the category of sets, a set-isomorphism is also called a bijection. Warning:
A map f: X — Y may be an isomorphism in one category but not in
another. For example, the map x — x* from R — R is a C-isomorphism,
but not a C' isomorphism (the inverse is continuous, but not differentiable
at the origin). In the category of vector spaces, it is true that a bijective
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morphism is an isomorphism, but the example we just gave shows that the
conclusion does not necessarily hold in other categories.

An automorphism is an isomorphism of an object with itself. The set of
automorphisms of an object X in a category form a group, denoted by
Aut(X).

If f: X - Y is a morphism, then a section of f is defined to be a
morphism g: ¥ — X such that fog=idy.

A functor A: A — A’ from a category A into a category A’ is a map
which associates with each object X in 2 an object A(X) in W/, and with
each morphism f: X — Y a morphism A(f): A(X) — A(Y) in W such
that, whenever f and g are morphisms in 2 which can be composed, then
M fg) = A(f)A(g) and A(idy) = id,(x) for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) — A(X) and A(fg) = A(g)A(f)).

In a similar way, one defines functors of many variables, which may
be covariant in some variables and contravariant in others. We shall
meet such functors when we discuss multilinear maps, differential forms,
etc.

The functors of the same variance from one category U to another 2’
form themselves the objects of a category Fun(2l, 2’). Its morphisms will
sometimes be called natural transformations instead of functor morphisms.
They are defined as follows. If A, x4 are two functors from U to W (say
covariant), then a natural transformation ¢#: A — u consists of a collection
of morphisms

tx: AX) — u(X)

as X ranges over A, which makes the following diagram commutative for
any morphism f: X — Y in 2:

MX) — p(x)
Af) lu(f )
HY) — u(¥)

Vector spaces form a category, the morphisms being the linear maps.
Note that (E,F) — L(E,F) is a functor in two variables, contravariant in
the first variable and covariant in the second. If many categories are being
considered simultaneously, then an isomorphism in the category of vector
spaces and linear map is called a linear isomorphism. We write Lis(E, F)
and Laut(E) for the vector spaces of linear isomorphisms of E onto F, and
the linear automorphisms of E respectively.
The vector space of r-multilinear maps

V.Ex---xXE—F
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of E into F will be denoted by L”"(E, F). Those which are symmetric (resp.
alternating) will be denoted by L{(E,F) or Ly, (E,F) (resp. L;(E,F)).
Symmetric means that the map is invariant under a permutation of its
variables. Alternating means that under a permutation, the map changes
by the sign of the permutation.

We find it convenient to denote by L(E), L"(E), L!(E), and L/(E) the
linear maps of E into R (resp. the r-multilinear, symmetric, alternating
maps of E into R). Following classical terminology, it is also convenient
to call such maps into R forms (of the corresponding type). If Ey,...,E,
and F are vector spaces, then we denote by L(Ey,...,E,;F) the multilinear
maps of the product E; x --- x E, into F. We let:

End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).
Thus for our finite dimensional vector space E, an element of End(E) is in
Laut(E) if and only if its determinant is # 0.
Suppose E, F are given norms. They determine a natural norm on L(E, F),

namely for 4 € L(E, F), the operator norm | 4| is the greatest lower bound of all
numbers K such that

x| < K|

for all xeE.

I, §2. FINITE DIMENSIONAL VECTOR SPACES

Unless otherwise specified, vector spaces will be finite dimensional over the
real numbers. Such vector spaces are linearly isomorphic to euclidean

space R" for some n. They have norms. If a basis {e,...,e,} is selected,
then there are two natural norms: the euclidean norm, such that for a
vector v with coordinates (xp,...,x,) with respect to the basis, we have

2 2
Iv|euc = Xj ++X,2,

The other natural norm is the sup norm, written |v|_, such that

00

o], = max |x;].
1
It is an elementary lemma that all norms on a finite dimensional vector
space E are equivalent. In other words, if | |; and | |, are norms on E,

then there exist constants C;, C, > 0 such that for all ve E we have

Cilo|, £ vl = G-
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A vector space with a norm is called a normed vector space. They form
a category whose morphisms are the norm preserving linear maps, which
are then necessarily injective.

By a euclidean space we mean a vector space with a positive definite
scalar product. A morphism in the euclidean category is a linear map
which preserves the scalar product. Such a map is necessarily injective.
An isomorphism in this category is called a metric or euclidean iso-
morphism. An orthonormal basis of a euclidean vector space gives rise to
a metric isomorphism with R”, mapping the unit vectors in the basis on
the usual unit vectors of R”.

Let E, F be vector spaces (so finite dimensional over R by convention).
The set of linear maps from E into F is a vector space isomorphic to the
space of m x n matrices if dim E =m and dim F = n.

Note that (E,F) — L(E,F) is a functor, contravariant in E and co-
variant in F. Similarly, we have the vector space of multilinear maps

L(E,,...,E,F)
of a product E; x --- x E, into F. Suppose norms are given on all E; and

F. Then a natural norm can be defined on L(E,...,E, F), namely the
norm of a multilinear map

A E x---xE, - F
is defined to be the greatest lower bound of all numbers K such that

[A(x1, ... x)] £ K|x1] -+ x|
We have:

Proposition 2.1. The canonical map
L(E\,L(E,,...,L(E,F)) — L'(E,,...,E,F)

from the repeated linear maps to the multilinear maps is a linear iso-
morphism which is norm preserving.

For purely differential properties, which norms are chosen are irrelevant
since all norms are equivalent. The relevance will arise when we deal with
metric structures, called Riemannian, in Chapter VIIL.

We note that a linear map and a multilinear map are necessarily
continuous, having assumed the vector spaces to be finite dimensional.
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I, §3. DERIVATIVES AND COMPOSITION OF MAPS

For the calculus in vector spaces, see my Undergraduate Analysis [La 83/
97]. We recall some of the statements here.
A real valued function of a real variable, defined on some neighborhood
of 0 is said to be o(z) if
iin(} o(t)/t=0.

Let E, F be two vector spaces (assumed finite dimensional), and ¢ a
mapping of a neighborhood of 0 in E into F. We say that ¢ is tangent to
0 if, given a neighborhood W of 0 in F, there exists a neighborhood ¥ of 0
in E such that

p(tV) < o(t) W

for some function o(¢). If both E, F are normed, then this amounts to the
usual condition

lp(x)] = [x(x)

with lim (x) =0 as |x| — 0.

Let E, F be two vector spaces and U open in E. Let f: U —F be a
continuous map. We shall say that f is differentiable at a point xo € U if
there exists a linear map 1 of E into F such that, if we let

f(xo+y) = f(x0) + 1y + 9(»)

for small y, then ¢ is tangent to 0. It then follows trivially that A is
uniquely determined, and we say that it is the derivative of f at xo. We
denote the derivative by D f(xo) or f’(xo). It is an element of L(E, F). If
S is differentiable at every point of U, then f’ is a map

f': U— L(E, F).
It is easy to verify the chain rule.

Proposition 3.1. If f: U — V is differentiable at xo, if g: V — W s
differentiable at f(xy), then go f is differentiable at xy, and

(g0 1) (x0) = g'(f(x0)) o f'(x0)-
Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the differential
calculus.

Let U be open in E and let f: U — F be differentiable at each point of
U. If f' is continuous, then we say that f is of class C!. We define maps



