PRINCIPLES OF WUANTUNIANTELLIGENCE **Andreas Wichert** ## DUANTUM ARTIFICIAL INTELLIGENCE Instituto Superior Técnico - Universidade de Lisboa, Portugal Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ### PRINCIPLES OF QUANTUM ARTIFICIAL INTELLIGENCE Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4566-74-2 Printed in Singapore by World Scientific Printers. ### PRINCIPLES OF **QUANTUM**ARTIFICIAL INTELLIGENCE 此为试读,需要完整PDF请访问: www.ertongbook.com ### Preface Artificial intelligence and quantum computation divide the subject into many major areas. Each of these areas are now so extensive and huge, that a major understanding of the core concepts that unite them is extremely difficult. This book is about the core ideas of artificial intelligence and quantum computation. They are united in new subarea of artificial intelligence: "Quantum Artificial Intelligence". The book is composed of two sections: the first is on classical computation and the second section is on quantum computation. In the first section, we introduce the basic principles of computation, representation and problem solving. In the second section, we introduce the principles of quantum computation and their relation to the core ideas of artificial intelligence, such as search and problem solving. We illustrate their use with several examples. The notes on which the book is based evolved in the course "Information and Computation for Artificial Intelligence" in the years 2008-2012 at Department of Computer Science and Engineering, Instituto Superior Técnico, Technical University of Lisbon. Thanks to Technical University of Lisbon for rewarding me a sabbatical leave in the 2012-2013 academic year, which has given me the time to finish this book. My research in recent years has benefited from many discussions with Ana Paiva, Luís Tarrataca, Ângelo Cardoso, João Sacramento and Catarina Moreira. Especially I would like to thank Luís Tarrataca and offer all of him deepest gratitude. The chapter about "Quantum Problem-Solving" is mainly based on his work. Finally, I would like to thank my loving wife Manuela, without her encouragement the book would be never finished. Andreas Wichert ### Contents | Pr | eface | | vii | | | | | | |----|-------------|---------------------------------------|-----|--|--|--|--|--| | 1. | Intro | oduction | 1 | | | | | | | | 1.1 | Artificial Intelligence | 1 | | | | | | | | 1.2 | Motivation and Goals | 2 | | | | | | | | 1.3 | Guide to the Reader | 4 | | | | | | | | 1.4 | Content | 4 | | | | | | | | | 1.4.1 Classical computation | 4 | | | | | | | | | 1.4.2 Quantum computation | 6 | | | | | | | 2. | Computation | | | | | | | | | | 2.1 | Entscheidungsproblem | 9 | | | | | | | | | 2.1.1 Cantor's diagonal argument | 11 | | | | | | | | | 2.1.2 Reductio ad absurdum | 11 | | | | | | | | 2.2 | Complexity Theory | 12 | | | | | | | | | 2.2.1 Decision problems | 13 | | | | | | | | | 2.2.2 P and NP | 13 | | | | | | | | 2.3 | Church-Turing Thesis | 14 | | | | | | | | | 2.3.1 Church—Turing—Deutsch principle | 15 | | | | | | | | 2.4 | Computers | 15 | | | | | | | | | 2.4.1 Analog computers | 15 | | | | | | | | | 2.4.2 Digital computers | 16 | | | | | | | | | 2.4.3 Von Neumann architecture | 16 | | | | | | | 3. | Probl | lem Solving | 19 | | | | | | | | 3.1 | Knowledge Representation | 19 | | | | | | | | | 3.1.1 | Rules | 19 | | | |----|-----------------------------|-----------|---|----------|--|--| | | | 3.1.2 | Logic-based operators | 20 | | | | | | 3.1.3 | Frames | 23 | | | | | | 3.1.4 | Categorial representation | 23 | | | | | | 3.1.5 | Binary vector representation | 24 | | | | | 3.2 | Produ | ction System | 25 | | | | | | 3.2.1 | Deduction systems | 26 | | | | | | 3.2.2 | Reaction systems | 28 | | | | | | 3.2.3 | Conflict resolution | 28 | | | | | | 3.2.4 | Human problem-solving | 29 | | | | | | 3.2.5 | Example | 29 | | | | | 3.3 | Sub-Sy | ymbolic Models of Problem-Solving | 30 | | | | | | 3.3.1 | Proto logic | 31 | | | | | | 3.3.2 | Binding problem | 32 | | | | | | 3.3.3 | Icons | 32 | | | | | | 3.3.4 | Euclidian geometry of the world | 35 | | | | 4. | Infor | mation | | 37 | | | | | 4.1 | Inform | nation and Thermodynamics | 37 | | | | | | 4.1.1 | Dice model | 39 | | | | | | 4.1.2 | Entropy | 40 | | | | | | 4.1.3 | Maxwell paradox and information | 41 | | | | | | 4.1.4 | Information theory | 42 | | | | | 4.2 Hierarchical Structures | | | | | | | | | 4.2.1 | Example of a taxonomy | 47
49 | | | | | 4.3 | Inform | nation and Measurement | 50 | | | | | | 4.3.1 | Information measure I | 52 | | | | | | 4.3.2 | Nature of information measure | 55 | | | | | | 4.3.3 | Measurement of angle | 55 | | | | | | 4.3.4 | Information and contour | 56 | | | | | 4.4 | Inform | ation and Memory | 57 | | | | | 4.5 | | code for Sub-symbols | 67 | | | | | | 4.5.1 | Sparsification based on unary sub-vectors | 68 | | | | | 4.6 | Deduc | tion Systems and Associative Memory | 68 | | | | | | 4.6.1 | Taxonomic knowledge organization | 74 | | | | 5. | Reve | rsible Al | lgorithms | 75 | | | | | 5.1 | Revers | sible Computation | 75 | | | | | 100 0 000 | | | | | | Contents xi | | 5.2 | Revers | sible Circuits | 76 | |----|-------|----------|---|-----| | | | 5.2.1 | Boolean gates | 76 | | | | 5.2.2 | Reversible Boolean gates | 76 | | | | 5.2.3 | Toffoli gate | 77 | | | | 5.2.4 | Circuit | 78 | | 6. | Prob | ability | | 79 | | | 6.1 | Kolmo | ogorovs Probabilities | 79 | | | | 6.1.1 | Conditional probability | 80 | | | | 6.1.2 | Bayes's rule | 81 | | | | 6.1.3 | Joint distribution | 82 | | | | 6.1.4 | Naïve Bayes and counting | 84 | | | | 6.1.5 | Counting and categorization | 85 | | | | 6.1.6 | Bayesian networks | 86 | | | 6.2 | Mixed | Distribution | 90 | | | 6.3 | | v Chains | 91 | | 7. | Intro | duction | to Quantum Physics | 95 | | | 7.1 | Unitar | y Evolution | 95 | | | | 7.1.1 | Schrödinger's cat paradox | 96 | | | | 7.1.2 | Interpretations of quantum mechanics | 96 | | | 7.2 | Quant | um Mechanics | 97 | | | | 7.2.1 | Stochastic Markov evolution and unitary evolution | 98 | | | 7.3 | Hilber | t Space | 99 | | | | 7.3.1 | Spectral representation* | 101 | | | 7.4 | Quant | um Time Evolution | 103 | | | 7.5 | | ound Systems | 105 | | | 7.6 | | eumann Entropy | 108 | | | 7.7 | | rement | 109 | | | | 7.7.1 | Observables | 110 | | | | 7.7.2 | Measuring a compound system | 111 | | | | 7.7.3 | Heisenberg's uncertainty principle* | 112 | | | 7.8 | Rando | mness | 114 | | | | 7.8.1 | Deterministic chaos | 114 | | | | 7.8.2 | Kolmogorov complexity | 114 | | | | 7.8.3 | Humans and random numbers | 116 | | | | 7.8.4 | Randomness in quantum physics | 116 | | 8. | Comp | outation | with Qubits | 119 | | | 8.1 | Computation with one Qubit | 119 | |-----|-------|---|-----| | | 8.2 | Computation with m Qubit | 121 | | | 8.3 | Matrix Representation of Serial and Parallel Operations . | 123 | | | 8.4 | Entanglement | 125 | | | 8.5 | Quantum Boolean Circuits | 127 | | | 8.6 | | 130 | | | 8.7 | Deutsch Logge Algorithm | 130 | | | 8.8 | Deutsch Jozsa Algorithm | | | | 0.0 | Amplitude Distribution | 135 | | | | 8.8.1 Cloning | 136 | | | 0.0 | 8.8.2 Teleportation | 137 | | | 8.9 | Geometric Operations | 139 | | 9. | Perio | dicity | 145 | | | 9.1 | Fourier Transform | 145 | | | 9.2 | Discrete Fourier Transform | 147 | | | | 9.2.1 Example | 149 | | | 9.3 | Quantum Fourier Transform | 150 | | | 9.4 | FFT | 153 | | | 9.5 | QFT Decomposition | 154 | | | | 9.5.1 QFT quantum circuit* | 155 | | | 9.6 | QFT Properties | 159 | | | 9.7 | The QFT Period Algorithm | 161 | | | 9.8 | Factorization | 164 | | | | 9.8.1 Example | 164 | | | 9.9 | Kitaev's Phase Estimation Algorithm* | 168 | | | | 9.9.1 Order finding | 170 | | | 9.10 | Unitary Transforms | 171 | | | | | | | 10. | Sear | ch | 173 | | | 10.1 | Search and Quantum Oracle | 173 | | | 10.2 | Lower Bound $\Omega(\sqrt{n})$ for U_f -based Search [*] | 175 | | | | 10.2.1 Lower bound of a_t | 176 | | | | 10.2.2 Upper bound of a_t | 178 | | | | 10.2.3 $\Omega(\sqrt{n})$ | 179 | | | 10.3 | Grover's Amplification | 180 | | | | 10.3.1 Householder reflection | 180 | | | | 10.3.2 Householder reflection and the mean value | 181 | | | | 10.3.3 Amplification | 182 | | Contents | xiii | |-----------|------| | Conticios | AIII | | | | 10.3.4 Iterative amplification | 184 | |-----|-------|--|-----| | | | 10.3.5 Number of iterations | 191 | | | | 10.3.6 Quantum counting | 192 | | | 10.4 | Circuit Representation | 194 | | | 10.5 | Speeding up the Traveling Salesman Problem | 195 | | | 10.6 | The Generate-and-Test Method | 196 | | 11. | Quai | ntum Problem-Solving | 199 | | | 11.1 | Symbols and Quantum Reality | 199 | | | 11.2 | Uninformed Tree Search | 200 | | | 11.3 | Heuristic Search | 203 | | | | 11.3.1 Heuristic functions | 205 | | | | 11.3.2 Invention of heuristic functions | 205 | | | | 11.3.3 Quality of heuristic | 207 | | | 11.4 | Quantum Tree Search | 208 | | | | 11.4.1 Principles of quantum tree search | 208 | | | | 11.4.2 Iterative quantum tree search | 210 | | | | 11.4.3 No constant branching factor | 211 | | | 11.5 | Quantum Production System | 212 | | | 11.6 | Tarrataca's Quantum Production System | 213 | | | | 11.6.1 3-puzzle | 213 | | | | 11.6.2 Extending for any <i>n</i> -puzzle | 217 | | | | 11.6.3 Pure production system | 218 | | | | 11.6.4 Unitary control strategy | 219 | | | 11.7 | A General Model of a Quantum Computer | 220 | | | | 11.7.1 Cognitive architecture | 220 | | | | 11.7.2 Representation | 221 | | 12. | Quar | ntum Cognition | 223 | | | 12.1 | Quantum Probability | 223 | | | 12.2 | Decision Making | 226 | | | | 12.2.1 Interference | 231 | | | 12.3 | Unpacking Effects | 232 | | | 12.4 | Conclusion | 233 | | 13. | Relat | sed Approaches | 235 | | | 13.1 | Quantum Walk | 235 | | | | 13.1.1 Random walk | 235 | | | 13.1.2 | Quantum insect | | * | | • | ž | 235 | |------------|---------|---|-----|---|---|---|---|-----| | | 13.1.3 | Quantum walk on a graph | | | | | | 237 | | | 13.1.4 | Quantum walk on one dimensional lattice | е. | | | | | 238 | | | 13.1.5 | Quantum walk and search | | | | | | 239 | | | 13.1.6 | Quantum walk for formula evaluation . | | ě | ě | ê | | 239 | | 13.2 | Adiaba | tic Computation | | • | • | × | ÷ | 240 | | | 13.2.1 | Quantum annealing | | | | | | 241 | | 13.3 | Quantu | m Neural Computation | . : | | | | | 243 | | 13.4 | Epilogu | e | | ě | ķ | ÷ | ¥ | 245 | | | | | | | | | | | | Bibliograp | hy | | | | | | | 247 | | Index | | | | | | | | 259 | ### Chapter 1 ### Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However, the artificial intelligence framework, such as search and production system theory, allows an elegant description of a quantum computer model that is capable of quickly executing programs. ### 1.1 Artificial Intelligence Artificial intelligence (AI) is a subfield of computer science that models the mechanisms of intelligent human behavior (intelligence). This approach is accomplished via simulation with the help of artificial artifacts, typically with computer programs on a machine that performs calculations. It should be noted that the machine does not need to be electronic. Indeed, Charles Babbage (1791-1871) sketched the first mechanical machine (a difference engine) for the calculation of certain values of polynomial functions [Hyman (1985)]. With the goal of mechanizing calculation steps, Babbage sketched the first model of a mechanical universal computer and called it an analytical engine. At the same time, Lady Ada Lovelance (1815-1852) thought about the computing power of such a machine. She argued that such a machine could only perform what it was told to do; such a machine could not generate new knowledge. The term "artificial intelligence" itself was invented by the American computer scientist John McCarthy. It was used in the title of a conference that took place in the year 1956 at Dartmonth College in the USA. During this meeting, programs were presented that played chess and checkers, proved theorems and interpreted texts. The programs were thought to simulate human intelligent behavior. However, the terms "intelligence" and "intelligent human behavior" are not very well defined and understood. The definition of artificial intelligence leads to the paradox of a discipline whose principal purpose is its own definition. A.M. Turing (1912-1954), in 1950, wrote the essay "Computing Machinery and Intelligence", in which he poses the question of how to determine whether a program is intelligent or not [Turing (1950)]. He defines intelligence as the reaction of an intelligent being to certain questions. This behavior can be tested by the so-called Turing test. A subject communicates over a computer terminal with two non-visible partners, a program and a human. If the subject cannot differentiate between the human and the program, the program is called intelligent. The questions posed can originate from any domain. However, if the domain is restricted, then the test is called a restricted Turing test. A restricted domain could be, for example, a medical diagnosis or the game of chess. Human problem-solving algorithms are studied in Artificial Intelligence. The key idea behind these algorithms is the symbolic representation of the domain in which the problems are solved. Symbols are used to denote or refer to something other than themselves, namely other things in the world (according to the, pioneering work of Tarski [Tarski (1944, 1956, 1995)]). They are defined by their occurrence in a structure and by a formal language which manipulates these structures [Simon (1991); Newell (1990)] (see Figure 1.1). In this context, symbols do not, by themselves, represent any utilizable knowledge. For example, they cannot be used for a definition of similarity criteria between themselves. The use of symbols in algorithms which imitate human intelligent behavior led to the famous physical symbol system hypothesis by Newell and Simon (1976) [Newell and Simon (1976)]: "The necessary and sufficient condition for a physical system to exhibit intelligence is that it be a physical symbol system." Symbols are not present in the world; they are the constructs of a human mind and simplify the process of representation used in communication and problem solving. ### 1.2 Motivation and Goals Traditional AI is built around abstract algorithms and data structures that manipulate symbols. One of the important algorithms is the tree or graph search. Common forms of knowledge representation are symbolic rules and semantic nets. Traditional AI attempts to imitate human behavior without