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Preface

These notes provide a detailed treatment of the thermal energy storage
and transport by conduction in natural and fabricated structures. Ther-
mal energy by two main carriers—-phonons and electrons—-are explored from
basic principles. For solid-state transport, a common Landauer framework
is used for heat flow, and issues including the quantum of thermal conduc-
tance, ballistic interface resistance, and carrier scattering are elucidated.
Bulk material properties, such as thermal conductivity, are derived from
transport theories, and the effects of spatial confinement on these proper-
ties are established.

The foregoing topics themselves are not unique as elements in a book;
many other outstanding texts cover these topics admirably and are cited
in context herein. At the same time, the present content emphasizes a
basic theoretical framework based on the Landauer formalism that is as
self-consistent as possible, not only internally but also with respect to sim-
ilar efforts in this book series on the subject of electrical transport. The
other series titles, written by Profs. Supriyo Datta and Mark Lundstrom,
have therefore provided much inspiration to the present work, as have my
related conversations with these two amazing colleagues. The end result
is (hopefully) an accessible exposition on the foundations of the subject
that remains concise by avoiding lengthy digressions into the vast array
of related contemporary research topics. At the same time, it is my hope
that readers, after studying this work, will be ready to enter the field well-
equipped to contribute to this wonderful body of research and community
of researchers.

T. S. Fisher
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Nomenclature

thermal diffusivity (length?/time)

inverse of thermal energy, (kgT)~! (1/energy)
carrier energy scaled by kT (-)

unit cells per volume of real space (1/volume)
volumetric electron density (1/volume)

quantum of thermal conductance (energy/time/temperature)
thermal conductivity (power x length/(‘area’ x temperature))
particle mean free path (length)

plate bending stiffness (force x distance = energy)
plate loading (force/area)

boundary scattering length scale (length)

carrier transmission function (-)

mass density of a continuum string (mass/length)
Poisson ratio (-)

number of possible states of a statistical ensemble (-)
frequency (radians/time)

Debye frequency (radians/time)

Einstein frequency (radians/time)

emitter work function (energy)

mass density (mass/volume)

scattering cross section (area)

electrical conductivity (current/(length x voltage))
scattering time (time)

scattering rate (1/time)

boundary scattering rate (1/time)

Debye temperature (temperature)

Einstein temperature (temperature)
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Fermi temperature (temperature)

scaled spectral thermal conductance (-)

boson energy (energy)

real-space lattice translational vectors (length)

reciprocal lattice translation vectors (lattice)

reciprocal lattice vector (1/length)

real-space lattice vector (length)

group velocity (length/time)

lattice constant (length)

phase velocity (length/time)

speed of light in vacuum, 2.99792458 x 108 m/s

volumetric specific heat (energy/(volume x temperature))

density of boson states, frequency basis (time/volume)

density of boson states, energy basis (volume energy) !

density of fermion states, energy basis (volume energy) !

density of boson states, k-space basis (length/volume)

dynamical matrix (force/(length x mass))

energy (energy)

bond energy (energy)

Fermi energy (energy)

Young’s modulus (force/area)

vacuum energy level (energy)

boundary scattering fitting factor (-)

force on an atom due to bond stretching (force)

equilibrium carrier distribution function (-)

forward-wave string displacement (length)

spring constant of an interatomic bond (force/length)

spectral thermal conductance (power/temperature, per unit
frequency for phonons, or per unit energy for electrons)

reflected-wave string displacement (length)

thermal conductance (power/temperature)

plate thickness (length)

electrical current density (current/‘area’)

heat flux (power/‘area’)

phonon wavevector (1/length)

electron wavevector (1/length)

Debye wavevector (1/length)

Fermi wavevector (1/length)
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Nomenclature xvii

Lorenz number, dimensionless constant x (%ﬂ)z

atomic mass (mass)

number of phonon modes (-)

number of electron modes (-)

electron mass, 9.10938188 x 107! kg

phonon mode density, d = system dimension (1/‘area’)

electron mode density, d = system dimension (1/‘area’)

number of atoms (-)

electron number (-)

Avogadro’s number, 6.0221415 x 102 (-)

defect density of impurity scatterers (1/volume)

number of allowed phonon states, d = system dimension (-)

number of allowed electron states (-)

number of phonons with wave vector K (-)

acoustic wave power (energy/time)

probability of a statistical state (-)

elementary electron charge, 1.602 x 1071 C

distance coordinate (length)

thermal boundary (interface) resistance (temperature/power)

area-normalized thermal boundary (interface) resistance
(areaxtemperature/power)

entropy (power/temperature)

interfacial energy transmittance from medium 1
to medium 2 (-)

internal energy (energy)

potential energy (energy)

atomic displacement away from equilibrium (length)

specific internal energy (energy/volume)

spectral energy density (energy/volume, per unit z, where x
is a spectral quantity such as frequency or wavelength)

acoustic wave velocity (length/time)

Fermi velocity (length/time)

total string displacement (length)

acoustic impedance of a string under tension (mass/time)
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