Second Edition
Computer

System
Architecture

M. MORRIS MANO

Second Edition

Computer
System
Architecture

M. MORRIS MANO

Professor of Engineering
California State University, Los Angeles

PreNTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

MaNO, M. MORRIS.
Computer system architecture.

Includes bibliographies and index.
1. Computer architecture. 1. Title.

A76.9.A73IM36 1982 621.3819'52 81-15799
ISBN 0-13-166611-8 AACR2

Editorial/Production Supervision: Nancy Moskowitz
Manufacturing Buyer: Joyce Levatino

Cover Design by Mario Piazza

Art Production by Margaret Mary Finnerty and Steven Frim

©1982 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved, No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher,

Printed in the United States of America

109 876543

ISBN 0-13-1kbkbll-8

PRENTICE-HALL INTERNATIONAL, INC,, London
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, L1D., Toronto
PRENTICE-HALL oF INDIA PRIVATE Lamrtep, New Delhi
PrENTICE-HALL OF JAPAN, INc., Tokyo

PRENTICE-HAILL OF SOUTHEAST ASIA PIE, LTD., Singapore
WHITEHALL Books LiMrTep, Wellington, New Zealand

Preface

Computer architecture is of concern to computer engineets who deal with the
hardware design of computer systems, and computer scientists involved in the design
of hardware dependent software systems. A computer system is a system that includes
both hardware and software. This book is concerned mostly with the hardware aspects
of computer systems, but the impact of software on the architecture of the computer
has not been neglected.

Computer architecture is sometimes defined to include only those attributes of
the computer that are of interest to the programmer. Here, we define computer archi-
tecture by considering what professional computer architects are supposed to know.
Computer architects must be familiar with the basic hardware building blocks from
which computers are constructed. They must have knowledge of the structure and
behavior of computer systems and the way they are designed. Thus, computer archi-
tecture as defined in this book is concerned with the structural organization and hard-
ware design of digital computer systems.

The physical organization of a particular processor including its registers, the
data flow, the micro-operations and control functions are best described symbolically
by means of a register transfer language. Such a language is developed in the book and
its relation to the hardware organization and design of digital computers is fully
explained. The register transfer language is used on many occasions to specify various
computer operations in a concise and precise manner.

- The plan of the book is to present the simpler material first and introduce the
more advanced subjects later. The first six chapters cover material needed for the
basic understanding of computer organization, design, and programming of a simple
digital computer. The last six chapters present the separate functional units of digital
computers with an emphasis on more advanced topics not covered in the earlier part.

The revisions for the second edition are in the last six chapters. Chapter 7, on
the central processor unit and Chapter 11, on input-output organization have been
completely rewritten. Chapter 8, on microprogramcontrol and Chapter 12, on memory
organization have been revised and new material added. The other chapters remain
essentially the same as the first edition except for some minor reorganization.

ix

x PREFACE

Chapter 1 introduces the fundamental knowledge needed for the design of
digital systems when they are constructed with individual gates and flip-flops. It covers
Boolean algebra, combinational circuits, and sequential circuits. In order to keep the
book within reasonable bounds, it is necessary to limit the discussion of this subject
to one introductory chapter. The justification for this approach is that the design of
digital computers takes on a different dimension when integrated circuit functions are
employed instead of individual gates and flip-flops. The material included in the first
chapter provides the necessary background for understanding the digital systems
being presented.

Chapter 2 starts by enumerating the general properties of integrated circuits.
It covers in detail some of the most basic digital functions such as registers, counters,
decoders, multiplexers, random access memories, and read-only memories. The digita!
functions are used as building blocks for the design of larger units in the chapters
that follow.

Chapter 3 presents the various data types found in digital computers and shows

how they are represented in binary form in computer registers. The emphasis is on the
representation of numbers employed in arithmetic computations and on the binary
coding of symbols, such as the letters of the alphabet used in data processing, and
other discrete symbols used for specific applications.

Chapter 4 defines a register transfer language and shows how it is used to express
in symbolic form the micro-operation sequences among the registers of a digital com-
puter. Symbols are defined for arithmetic, logic, and shift micro-operations as well
as for control functions that initiate the micro-operations. The presentation goes to
great lengths to show the hardware implications associated with the various symbols
and register transfer statements. ‘

Chapter 5 presents the organization and design of a small basic digital computer.
The registers of the computer are defined and a set of computer instructions is speci-
fied. The computer description is formalized with register transfer statements that
specify the micro-operations among the registers as well as the contro! functions
that initiate the micro-operations. 1t is then shown that the set of micro-operations
can be used to design the data processor part of the computer. The control functions
in the list of register transfer statements supply the information for the design of the
control unit.

Chapter 6 utilizes the twenty-five instructions of the basic computer defined in
Chapter 5 to illustrate many of the techniques commonly used to program a computer.
Programming examples in symbolic code are presented for many elementary data
processing tasks. The relationships between binary programs, symbolic .code pro-
grams, and high-level language programs are explained by examples. This leads into
the necessity for translation programs such as assemblers atd compilers. The basic
operation of at. assembler is presented together with' other system programs. The pur-
pose of this chapter is to introduce the basic ideas of computer software without
going deeply 1o detail. Knowledge of software principles coupled with the hard-
ware prese: uon should give the reader an overview of a total computer system
which includes both hardware and software.

PREFACE xi

Chapter 7 deals with the central processor unit (CPU) of digital computers. A
bus organized processor is presented and a specific arithmetic logic unit (ALU) is
designed. The organization of a memory stack is explained with a demonstration of
some of its applications. Various instruction formats are illustrated togethei .vith
their addressing modes. The most common instructions found in a typical computer
are enumerated with an explanation of their functions. The microprocessor which is
a CPU enclosed in one integrated circuit package is then introduced and its internal
and external characteristics analyzed. The chapter concludes with a section on parallel
and pipeline processing.

Chapter 8 introduces the concept of microprogramming. A specific control
unit is developed to show by example how to generate the microprogram for a typical
set of computer instructions. A microprogram sequencer is developed to demonstrate
the design procedure with LSI components of the bit-sliced variety. The last section
discusses the advantages and applications of microprogramming.

Chapter 9 is devoted to the design of an arithmetic processor. It presents the
algorithms for addition, subtraction, multiplication, and division of binary integer
numbers in signed-magnitude representation. The arithmetic processor is designed
using the register transfer language. The configuration ties the arithmetic processor
to the computer designed in Chapter 5. A binary calculator is defined and used for
demonstrating the method by which the arithmetic operations can be micropro-
grammed.

Chapter 10 presents other arithmetic algorithms. Algorithms are developed
for signed-2's complement binary data, for floating-point data, and decimal data.
The algorithms are presented by means of flow charts that use the register transfer
language to specify the sequence of micro-operations and control decisions required
for the implementation of the algorithms.

Chapter 11 explains the function of some commonly used input and output
devices. The requirement of an interface between the processor and /O devices is
explained and the various configurations for I/O transfers are enumerated. This
includes asynchronous transfer, direct memory access, and priority interrupt. Other
topics covered are input-output processors, data communication processors, and
multiprocessor system organization.

Chapter 12 introduces the concept of memory hierarchy, composed of cache
memory, main memory, and auxiliary memory devices such as magnetic disks and
tapes. The internal organization and external operation of associative memories is
explained in detail. The concept of memory management is introduced through the
presentation of the hardware requirements for a cache memory and a virtual memory
system.

Every chapter includes a set of problems and a list of references. Some of the
problems serve as exercises for the material covered in the chapter. Others are of a
more advanced nature and are intended o provide some practice in solving probs
lems associated with the area of digital computer hardware design. A Solutions
Manual is available for the instructor from the publishor.

The book is suitable for a course in computer architecture in an electrical

xif PREFACE

engineering, computer engineering, or computer science department. Parts of the
book can be used in a variety of ways: (1) As a first course in computer hardware
organization by covering Chapters 1 through 5 with additional material from Chapters
7, 8, or 9 as the instructor sees fit. (2) As a course in computer design with previous
knowledge of digital logic design by reviewing Chapter 5 and then covering Chapters
7 through 12. (3) As a course in computer hardware systems that covers the five
functional units of digital computers: processor (Chapter 7), control (Chapter 8),
arthimetic (Chapter 10), input-output (Chapter 11), and memory (Chapter 12). The
book is also suitable for self-study by computer engineers and scientists who need to
acquire the basic knowledge of computer hardware architecture.

M. MoRrIs MaNO

Contents

1

2

[T G G G QI QY
'
NOOR,WN -

PREFACE

DIGITAL LOGIC CIRCUITS

Logic Gates [

Boolean Algebra 5

Map Simplification 8
Combinational Circuits 15
Flip-Flops 21
Sequential Circuits 26
Concluding Remarks 35
References 35

Problems 36

INTEGRATED CIRCUITS
AND DIGITAL FUNCTIONS

Digital Integrated Circuits 39

IC Flip-Flops and Registers 45
Decoders and Multiplexers 50

Binary Counters 54

Shift Registers 59

Random-Access Memories (RAM) 62
Read-Only Memories (ROM) 69
References 72

Problems 72

ix

39

/v CONTENTS
3 DATA REPRESENTATION 75

3-1 Data Types 75

3-2 Fixed-Point Representation &2
3-3 Floating-Point Representation 89
3-4 Other Binary Codes 92

3-5 Error Detection Codes 95
References 97

Problems 97

4 REGISTER TRANSFER
AND MICRO-OPERATIONS 101

4-1 Register Transfer Language 10!
4-2 inter-Register Transfer 102

4-3 Arithmetic Micro-Operations 113
4-4 Logic Micro-Operations 118
4-5 Shift Micro-Operations 126

4-6 Control Functions 128
References 133

Problems 133

5 BASIC COMPUTER ORGANIZATION
AND DESIGN 137

5-1 Instruction Codes 137

5-2 Computer Instructions 140

5-3 Timing and Control 145

5-4 Execution of Instructions 149
5-5 Input-Output and Interrupt 156
5-6 Design of Computer 161

5-7 Conciuding Remarks 166
References 167

Problems 168

6 COMPUTER SOFTWARE 172

6-1 Introduction 172
6-2 Programming Languages 174
6-3 Assembly Language 177

CONTENTS v

4 The Assembler 182

5 Program Loops 188

-6 Programming Arithmetic and Logic Operations 190
7 Subroutines 196

8 Input-Output Programming 201

9 System Software 206

References 212

Problems 213

7 CENTRAL PROCESSOR ORGANIZATION 217

Processor Bus Organization 217
Arithmetic Logic Unit (ALU) 279
Stack Organization 228
Instruction Formats 236
Addressing Modes 241

Data Transfer and Manipulation 248
Program Control 254
Microprocessor Organization 264
Parallel Processing 273
References 284

Problems 284

\I\l\l\ll\l\l\l\l\l
CoNOTOAWN -

8 MICROPROGRAM CONTROL ORGANIZATION 290

8-1 Control Memory 290

8-2 Address Sequencing 292

8-3 Microprogram Example 298

8-4 Microprogram Sequencer 308
8-5 Microinstruction Formats 312
8-6 Software Aids 318

8-7 Advantages and Applications 320
References 323

Problems 323

9 ARITHMETIC PROCESSOR DESIGN 328

1 Introduction 328
2 Comparison and Subtraction
of Unsigned Binary Numbers 329

9-
9-

vi CONTENTS

9-3

10

11

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8

12

12-1

12-2
12-3

Addition and Subtraction Algorithm 334
Multiplication Algorithm 338

Division Algorithm 341

Processor Configuration 346

Design of Control 350
Microprogrammed Calculator 352
References 361

Problems 361

ARITHMETIC ALGORITHMS

Introduction 364

Arithmetic with Signed-2's Complement
Numbers 366

Muitiplication and Division 369
Floating-Point Arithmetic Operations 377
Decimal Arithmetic Unit 387

Decimal Arithmetic Operations 39!
References 398

Problems 398

INPUT-OUTPUT ORGANIZATION

Peripheral Devices 403

1/0 Interface 406

Asynchronous Data Transfer 415

Direct Memory Access (DMA) 428
Priority Interrupt 434

Input-Output Processor (IOP) 443
Multiprocessor System Organization 454
Data Communication Processor 462
References 473

Problems 474

MEMORY ORGANIZATION

Auxiliary Memory 478
Microcomputer Memory 432
Memory Hierarchy 437

364

403

478

CONTENTS

Associative Memory 489

Virtual Memory 495

Cache Memory 501

Memory Management Hardware 509
References 518

Problems 518

vif

Digital Logic Circuits

1-1 LOGIC GATES

A digital computer, as the name implies, is a digital system that performs various
computational tasks. The word digital implies that the information in the computer
is represented by variables that take a limited number of discrete or quantized values.
These values are processed internally by components that can maintain a limited
number of discrete states. The decimal digits O, 1, 2, ..., 9, for example, provide
10 discrete values. In practice, digital computers function more reliably if only two
states are used. Because of the physical restriction of components, and because
human logic tends to be binary (i.e., true or false, yes or no statements), digital com-
ponents that are constrained to take discrete values are further constrained to take
only two values and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and
1. A binary digit is called a bir. Information is represented in digital computers
in groups of bits. By using various coding techniques groups of bits can be made
to represent not only binary numbers but also any other discrete symbols, such
as decimal digits or letters of the alphabet. By judicious use of binary arrangements
and by using various coding techniques, the binary digits or groups of bits may
be used to develop complete sets of instructions for performing various types of
computations.

In contrast to common decimal numbers that employ the base 10 system,
binary numbers use a base 2 system. For example, the binary number 101101 repre-
sents a quantity that can be converted to a decimal number by multiplying each bit
by the base 2 raised to an integer power as follows:

: l'X2’+0X2‘+lX23+1X2‘+0X2‘+1x2°=45

The six bits 101101 represent a binary number whose decimal equivalent is 45. How-
ever, the group of six bits could also represent a binary code for a letter of the alpha-

2 DIGITAL LOGIC CIRCUITS CcH 1

bet or a control code for specifying some decision logic in a particular digital system.
In other words, groups of bits in a digital computer are used to represent many
different things. This is similar to the concept that the same letters of an alphabet
are used to construct different languages, such as English and French.

Binary information is represented in a digital system by physical quantities
called signals Electrical signals such as voltages exist throughout a digital system
in either one of two recongnizable values and represent a binary variable equal to
1 or 0 For example, a particular digital system may employ a signal of 3 V to repre-
sent a binary 1 and 0 5V fui binary 0. As shown in Fig. 1-1, each binary value has
an acceptable deviation from the nominal. The intermediate region between the
two allowed regions 1s crossed only during state transition. The input terminals
of digital circunts accept binary signals within the allowable tolerances and the circuits
respond at the output terminals with binary signals that fall within the specified
tolerances

///////////////

— e
/////// /////////////// / banary O

Fig. 1-1 Example of a binary signal,

l\)

—

(=]

Binary logic deals with binary variables and with operations that assume a
logical meaning. It is used to describe, in algebraic or tabular form, the manipula-
tion and processing of binary information. The manipulation of binary information
is done by logic circuits called gates. Gates are blocks of hardware that produce
signals of binary 1 or 0 when input logic requirements are satisfied. Various logic
gates are commonly found in digital computer systems. Each gate has a distinct
graphic symbol and its operation can be described by means of an algebraic function.
The input-output reiationship of the binary variables for each gate can be repre-
sented 1n tabular form in a truth table.

The names, graphic symbols, algebraic functions, and truth tables of eight logic
gates are listed in Fig 1-2. Each gate has one or two binary input variables desig-
nated by A and B and one binary output vanable designated by x. The AND gate
produces the AND logic junction: that is, the output is 1 if input a and input B are
both binary |, otherwise, the output is 0, These conditions are alsg specified in the

sec. 1-1 LOGIC GATES 3

truth table for the AND gate. The table shows that output x is | only when both
input 4 and input B are 1. The algebraic operation symbol of the AND function
is the same as the multiplication symbol of ordinary arithmetic. We can either use
a dot between the variables or concatenate the variables without an operation symbol
between them. AND gates may have more than two inputs and by definition, the
output is 1 if and only if all inputs are 1.

The OR gate produces the inclusive-OR function, that is, the output is 1 if
input 4 or input B or both inputs are 1; otherwise, the output is 0. The algebraic
symbol of the OR function is +, similar to arithmetic addition. OR gates may have
more than two inputs and by definition, the output is 1 if any input is 1.

The inverter circuit inverts the logic sense of a binary signal. It produces the
NOT, or complement, function. The algebraic symbol used for the logic complement

Graphic Algebraic Truth
Name Symbol Function Table
A Bl|lx
AND x or
B x = AB 0 110
1 010
1 1)1
A B|x
A 0 0]0
OR 33—:: x=A+B o9
_ 1 ol1
1 1|t
inverter A—-—Dtb——x x=A

buffer A

NAND . A:l:):——x = (ABY

Fig. 1-2 Digital logic gates.

Graphic Algebraic Truth
Name Symbol Function Table
A Blx
NOR 4 x x=(A+ By 0 011
B 010
: ’ 1 0(O0
1.1)0
A Bjx
exclusive-OR AD',: x :rA ®B 0 0lo
(XOR) B X A'B 4+ AB 0 1(1
1 01
1 110
A Bjx
fusive-NO =

ex::, ruswe R A . x=A0B 0 o0l1
x o 0 1{0

equivalence B = A'B’ + AB
quivi .n x=AB + 1 olo
1 1}1

Fig. 1-2 (Continued),

is either a prime or a bar over the variable symbol. This book uses a prime for the
logic complement of a binary variable, while a bar over the letter is reserved for des-
ignating a complement micro-operation as-defined in'Chap. 4. ‘

The small circle in the output of the graphic symbol of an inverter designates
a logic complement. A triangle symbol by itself designates a buffer circuit. A buffer
does not produce any particular logic function since the binary value of the output
is the same as the binary value of the input. This circuit is used merely for signal
amplification. For example, a buffer that uses 3 V for binary 1 will produce an output
~ of 3V when its input is 3 V. However, the current supplied at the input is much
“smaller than the current produced at the output. This way, a buffer can drive many
other gates requiring a large amount of current not otherwise avallable from the
small amount of current applied to the buffer input.

The NAND function is the complement of the AND f\mcnon, as indicated
by the graphic symbol which consists of an AND graphic symbol followed by a
-small circle. The designation NAND is derived from the abbreviation of NOT-AND,
A miore proper designation would have been AND-invert since it is the AND func-
tion that is inverted. The NOR gate is the complement of the-OR gate and uses an
OR graphic symbol followed by a small circle. Both NAND and NOR gates may
have more than two inputs, and the output is always the complement of the AND
or OR function, respectively.

SEC. 1-2 BOOLEAN ALGEBRA 5

The exclusive-OR gate has a graphic symbol similar to the OR gate except
for the additional curved line on the input side. The output of this gate is 1 if any
input is 1 but excludes the combination when both inputs are 1. The exclusive-OR
function has its own algebraic symbol or can be expressed in terms of AND, OR,
and complement operations as shown in Fig. 1-2. The exclusive-NOR is the com-
plement of the exclusive-OR as indicated by the small circle in the graphic symbol.
The output of this gate is 1 only if both inputs have the same binary value. We shall
refer to the exclusive-NOR function as the equivalence function. Since the
exclusive-OR and equivalence functions are not always the complement of each
other. A more fitting name for the exclusive-OR operation would be an odd function;
i.e., its output is 1 if an odd number of inputs are 1. Thus, in a three-input exclusive-
OR (odd) function, the output is 1 if only one input is 1 or if all three inputs are 1.
The equivalence function is an even function; that is, its output is 1 if an even number
of inputs are 0. For a three-input equivalence function, the output is 1 if none of
the inputs are 0 (all inputs are 1) or if two of its inputs are 0 (one input is 1). Careful
investigation will show that the exclusive-OR and equivalence functions are the
complement of each other when the gates have an even number of inputs, but the
two functions are equal when the number of inputs is odd. These two gates are com-
monly available with two inputs and only seldom are they found with three or more
inputs.

1-2 BOOLEAN ALGEBRA

Boolean algebra is an algebra that deals with binary variables and logic opera-
tions. The variables are designated by letters such as A, B, x, and y. The three basic
logic operations are AND, OR, and complement. A Boolean function is an algebraic
expression formed with binary variables, the logic operation symbols, parentheses,
and equal sign.For a given value of the variables, the Boolean function can be either
1 or 0. Consider, for example, the Boolean function

=x+y’z

The function F is equal to 1 if x is 1 or if both y’ and z are equal to 1; F is equal to
0 otherwise. But saying that y’ = 1 is equivalent to saying that y = O since y’ is the
complement of y. Equivalently, we may say that Fis equal to 1 if x = 1 or yz = 0l.
The relationship between a function and its binary variables can be represented in
a truth table. To represent a function in a truth table we need a list of the 2" com-
binations with 1’s and 0’s of the n binary variables. As shown in Fig. 1-3(a), there
are eight possnble distinct combinations for assigning bits to the three variables.
The function F is equal to 1 for those combinations where x = 1 or yz = 01; it is
equal to O for all other combinations.

A Boolean function can be transformed from an algebra:c expressnon into

