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Preface

Bridging the scales for material multiphysical studies.

Smart materials, Added Value Manufacturing, and
factories for the future are key technological subjects for the
future product developments and innovation. One of the key
challenges is to play with the microstructure of the material
to not only improve its properties but also to find new
properties. Another key challenge is to define micro- or
nano-composites in order to mix physical properties. This
allows enlarging the field of possible innovative material
design. The other key challenge is to define new
manufacturing processes to realize these materials and new
factory organization to produce the commercial product.
From the material to the product, the numerical design tools
must follow all these evolutions from the nanoscopic scale to
the macroscopic scale (simulation and optimization of the
factory). If we analyze the great amount of numerical tool
development in the world, we find a great amount of
development at the nanoscopic to the microscopic scales,
typically linked to ab initio calculations and molecular
dynamics. We also find a great amount of numerical
approaches used at the millimeter to the meter scales. The
most famous in the field of engineering is the finite element
method (FEM). But there is a numerical death valley to pass



xviii  Discrete Element Method to Model 3D Continuous Materials

though, from micrometers to several centimeters. This scale
corresponds to the need for taking into account discontinuity
or microstructures in the material behavior at the sample
scale or component scale (several centimeters). Since the
2000’s, some attempts have been carried out to apply the
discrete element method (DEM) for simulation of continuous
materials. This method has been developed historically for
true granular materials, like sand, civil engineering grains or
pharmaceutical powders. Some recent developments give new
and simple tools to simulate quantitatively continuous
materials and to pass from microscopic interactions at the
material scale to the classical macroscopic properties at the
component scale (stress and strain, thermal conductivity,
cracks, damages, electrical resistivity, etc.).

In this set of books on descrete element model and
simulation of continuous materials, we propose to present
and explain the main advances in this field since 2010. This
first book primarily explains in a clear and simple manner
the numerical way to build a DEM simulation that gives the
right (same) macroscopic material properties, e.g. Young
Modulus, Poisson Ratio, thermal conductivity, etc. Then, it
shows how this numerical tool offers a new and powerful
method for analysis and modeling of cracks, damages and
finally failure of a component. The second book [JEB 15]
presents the coupling (bridging) between DEM method and
continuum numerical methods, like the FEM. This allows us
to focus DEM on the parts where the microscopic properties
and discontinuities conduce the behavior and allow FEM
calculation where the material can be considered as
continuous and homogeneous. The last book [CHA 15]
presents the object oriented numerical code developed under
the free License GPL: GranOO (www.granoo.org). All the
presented developments are implemented in a simple way on
this platform. This allows scientists and engineers to test and
contribute to improving the presented methods in a simple
and open way.
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Now, dear reader let us open this book and welcome in the
DEM community for the material of future development ...

Ivan IORDANOFF
January 2015
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