UML 5 fif (g 0 i i} 3% B A

L oMb

ErrecTivi COM

50 Ways 1o InprovE YOUR COM

AND MTS-BASED APPLICATIONS

DON BOX TIM EWALD 4
KEITH BROWN CHRIS SELLS '

OBJECT TECHNOLOGY
L

BOOCH
JRCOBSON
RUMBAUGH

ADDISON-WESL

wp At 4 % B &

WWW.sciencep.com

UML 5 i st &%t A4

COM §F L&

Don Box Tim Ewald e
Keith Brown Chris Sells

M4 5 % K

& & 7

COM 2 [i) % 52 43 A RN IR I A o BB P R 2 BoR . AR & MR8 H 24 COM SEn
TFRIMAIFLOE, BT 50 L EEMME, JHFHMNh 6 KK M C++3) COM i, Hr i
COM FFRILASZE, SCHfil]8, apartment 5 XME&, AN, FHH. B4, BB T B
AR

APEEHLKN C++. COM M MTS FEFETF &R A R L.

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Effective COM: 50 Ways to Improve Your COM and MTS-based
Applications, 1™ Edition by Don Box, Copyright©1999

ISBN 0-201-37968-6

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

PR NRERTEES N AP E A 01T B A [S XD §98RAT.
AP A Pearson Education(B5/E # & tH AR WD HOGET Db 2s . AR & At 15

5 01-2003-2546

E B B (CIP)EE

COM i v #=Effective COM: 50 Ways to Improve Your COM and MTS-based Applications/ (5)
[l (Box,D.) 54 —FEIA. —bni: FleEhiikst, 2003

ISBN 7-03-011404-3

[.C.. ILW... NLAMHED, COM—RF#it—%3C IV.TP311.52

rp SRR AS 4505 CIP Bl #% 7 (2003) 2 030821 45

R %4 BRI/ TiERE: FRL
TP H: SAR/HEHNE: AFALP@ELIHE
A 5 & R o IR
AL 54 SRR T 1645
B EHaH4: 100717
http://www.sciencep.com

24 ® 4 5 Gkl
REEUBGERAT HHHFE SRR

*

2003 45 A — R FFA: 787X960 1/16

2003 45 HES— kBRI Opgk: 143/4

EN%: 1—2 000 74 281000
EM:30.00 T

(PR E RIS, BAATFERBRCI)

ENEIS

Bl TR AR M R T R = N AR AR TR, LR AVE Rt e A K. &2
LT TR A () Rt R X, ORI 2% X AR H LR A AR A Bk B A A= A
Pe k. 20 e 60 AR AL AT REHA TR R BT B il 8V T &
HNEME . FREATF R I 60 AT TRM A & B F TAED 0P &, wER] 70
FREAEER it 7k 80 AERMI LA R I K ik, HLE M I X R & ik

T[] X S KA T & 7 TR R AE G AL T R U R AN SR 6 R TF R VLAY Sty | K 8
MR, EEMadE. B3, K, HEFEALBRAELENH, RV RHE R
BN AR 2 i Il U R H S R R, EAR KRR Gt T 4. I) X S R i
FEFBOHE S . DUE X3 & i) PSRBT BAE R, TERL T 0 S0 5 ik i

20 42 80 4EAAK 90 4ERA), Jefm HBL T ILA-FiiE i X S ikt k. Mo,
Booch, Coad/Yourdon . OMT Fl Jacobson 5§ J7 45 3] 1 [1) XF G HAF - & A0 2 k] .
BRI EERR 221) 0 R BE S R PRAR AR AR, BMERESAHR], & AEAR BRFRk
WA, @i 90 AR FIERIRZIEIMGHE, ATTEEHAREIA R 7k E Ha
Gy R AR, A HAZR S i l8l, fR M E A A% &M
EFRBARKRNZES, A TR S UME. FEXMEL T, S&—88E S
(UML) T 90 S IRLZ T AR .

UML 7 4 B A TE =0 [X2 158 % % G. Booch, J. Rumbaugh FI L
Jacobson Wil J1EAE. T Z R ikl 7R EA FIMERHES, ff UML WS
MFIREAEAEE E S T DA —R e, HHARME T SRl P s & ot —24 &
FIPLEl. UML AR B & M R GRS T I R S, AR i 2R ik,
SO I — B R RS . 1997 4E 11 1 UML #f OMG A4 IF 2R A bRIE R BAETE
. FFERES LA s i A R R SR SE B B RS R bR

UML 7153 AIE e O T 7 R m e TAE, DA & RO F 18 1 X 5 5 21
FAEE R DL AR iy O SOLEBTE S, T A B IR S B =, e anfay
iz A SR F T & . UML DL —Fa s 5 B A B, AE S EPr—ut
HAKE L. RERENEFT¥MABECRAF 20, (B EEX e 114
& LATE) &R AR vk J0 T LU

M UML R IRATH G, (23] i E= W A ME R, OMG RN FIR A Al
B SR EHE B TSR BE T bRAERI LA, (A BORERZ AP . e Z A

ii COM HF w4

FRi O EMERIMRGEE, WEBGEERE. @5 58MAS% . it AL R
g, HRRGE . REHM%. EIVEREHE TR TR, RS, o fRgs
P B Ay 1 . i L AN AU BR T LR,] TR RS, planss
s AR . ks A S ST, FE,

£ UML BEEER AL IA S, FAEIE T RI— A B a Fas iR . Bk
i) UML2.0 FiASKHAT UML B X —WK E KRS0 . ki) UML ¥ [518 = Rkl
AT AR SRR E, AL TR SRR A R A

AR T ST %G AR A UML 4 609 12 445, e 1 i) %t 428 AR s i
RIEHHUA B UML MR AT ahAs . LA Kok i) b R AR RS A 75 -5 SE BRI A 31X
FEILAS: (HEPAMR RGN LT) FEHE T X RS . #Eist.
KA R . Sh& BT . B A B A 72 5 4 55 00 T LA K i 1) %o 2 B AR 43 o A A 2R
WHIRS Ak (A UML B TR R EE) FEAE T R ROTRIE . 47
WrBe, BB B GBI E N Tk SEA; (RSJHBERL) N4 T FEd FsUR
R FREEEA SRR S A ; (UML X3t JEat) 00 28 i) i)
it S IS HIE Y A

W B UML e S iz -l A X FE J LA . (UML G/ RGEHT &) VHE T #1358
B RGEIF R BT EEXT UML #5179 R EA ;. (B UML W Web IR) g Tia
Fi UML 47 Web @M RZEBRHEAR S ik (Emx R R, #5, 84
5 TH) A48 T4 UML S 1 i) o G2 40 T 10 S 4R i i 5 T L (4,
FafF . HEZRS UML R HE T afaliz i UML S i i 5ot 4 B AR ——Ha fF-HE 2R 4
AREEBR K. (UML 5 Visual Basic N T H A) FEHE T M UML EEIF|
Visual Basic /7 85 M5 772 .

AR RMEAROAEPAS . (COM BT L) Ml (ATL HEARNHE) . &
ARV T T A B G FR B AR ——COM M1 ATL H AR B TS SHANEE.

B —4A (Executable UML B A%) , XA BAA 7 alHidT UML B S
FEEAR , (ASBIAY A I0IE SR A B ARG i B shA: s b T e, tRRE R F &
) —FfoBr (AR K

BZ, XEBIWRAABTAE TR SdBREsEn k585K, F
AL P AR R AR SR R | BT R ARYE THRAMN AR, HFENECLET K
BT RIASUR. PTLABE, H—AHBIRZ L.

AYTF I, R RS AR i A 1S, ERRRE | 2SI ST,

LFRFIHEME FEA HE

Preface

The evolution of the Component Object Model (COM) has in many ways paral-
leled the evolution of C++. Both movements shared a common goal of achieving
better reuse and modularity through refinements to an existing programming
model. In the case of C++, the preceding model was procedural programming in
C, and C++’s added value was its support for class-based object-oriented pro-
gramming. In the case of COM, the preceding model was class-based program-
ming in C++, and COM’s added value is its support for interface-based
object-oriented programming.

As C++ evolved, its canon evolved as well. One notable work in this canon was
Scott Meyers’ Effective C++. This text was perhaps the first text that did not try
to teach the reader the basic mechanics and syntax of C++. Rather, Effective C++
was targeted at the working C++ practitioner and offered 50 concrete rules that
all C++ developers should follow to craft reasonable C++-based systems. The suc-
cess of Effective C++ required a critical mass of practitioners in the field working
with the technology. Additionally, Effective C++ relied on a critical mass of sup-
porting texts in the canon. At the time of its initial publication, the supporting
texts were primarily The C++ Programming Language by Stroustrup and The C++
Primer by Lippman, although a variety of other introductory texts were also
available.

The COM programming movement has reached a similar state of critical mass.
Given the mass adoption of COM by Microsoft as well as many other develop-
ment organizations, the number of COM developers is slowly but surely ap-
proaching the number of Windows developers. Also, five years after its first
public release, there is finally a sufficiently large canon to lay the tutorial ground-
work for a more advanced text. To this end, Effective COM represents a homage
to Scott Meyers' seminal work and attempts to provide a book that is sufficiently

vi Preface

approachable that most working developers can easily find solutions to common
design and coding problems.

Virtually all existing COM texts assume that the reader has no COM knowledge
and focus most of their attention on teaching the basics. Effective COM attempts
to fill a hole in the current COM canon by providing guidelines that transcend
basic tutorial explanations of the mechanics or theory of COM. These concrete
guidelines are based on the authors’ experiences working with and training liter-
ally thousands of COM developers over the last four years as well as on the com-
munal body of knowledge that has emerged from various Internet-based forums,
the most important of which is the DCOM mailing list hosted at DCOM-re-
quest@discuss.microsoft.com.

This book owes a lot to the various reviewers who offered feedback during the
book’s development. These reviewers included Saji Abraham, David Chappell,
Steve DeLassus, Richard Grimes, Martin Gudgin, Ted Neff, Mike Nelson, Peter
Partch, Wilf Russell, Ranjiv Sharma, George Shepherd, and James Sievert.
Special thanks go to George Reilly, whose extensive copyediting showed the au-
thors just how horrible their grammar really is. Any errors that remain are the re-
sponsibility of the authors. You can let us know about these errors by
sending mail to effectiveerrata@develop.com. Any errata or updates
to the book will be posted to the book's Web page, http://www.de-
velop.com/effectivecom.

The fact that some of the guidelines presented in this book fly in the face of pop-
ular opinion and/or “official” documentation from Microsoft may at first be con-
fusing to the reader. We encourage you to test our assertions against your current
beliefs and let us know what you find. The four authors can be reached en masse
by sending electronic mail to ef fectivecom@develop.com.

Intended Audience

This book is targeted at developers currently using the Component Object
Model and Microsoft Transaction Server (MTS) to develop software. Effective
COM is not a tutorial or primer; rather, it assumes that the reader has already
tackled at least one pilot project in COM and has been humbled by the complex-
ity and breadth of distributed object computing. This book also assumes that the
reader is at least somewhat familiar with the working vocabulary of COM as it is
described in Essential COM. The book is targeted primarily at developers who
work in C++; however, many of the topics (e.g., interface design, security, trans-

Preface vii

actions) are approachable by developers who work in Visual Basic, Java, or

Object Pascal.

What to Expect

The book is arranged in six chapters. Except for the first chapter, which addresses
the cultural differences between “100% pure” C++ and COM, each chapter ad-
dresses one of the core atoms of COM.

Shifting from C++ to COM
Developers who work in C++ have the most flexibility when working in COM.

However, it is these developers who must make the most adjustments to accom-
modate COM-based development. This chapter offers five concrete guidelines
that make the transition from pure C++ to COM-based development possible.
Aspects of COM/C++ discussed include exception handling, singletons, and
interface-based programming,.

Interfaces

The most fundamental atom of COM development is the interface. A well-de-
signed interface will help increase system efficiency and usability. A poorly de-
signed interface will make a system brittle and difficult to use. This chapter offers
12 concrete guidelines that help COM developers design interfaces that are effi-
cient, correct, and approachable. Aspects of interface design discussed include
round-trip optimization, semantic correctness, and common design flaws.

Implementations

Writing COM code in C++ requires a raised awareness of details, irrespective of
the framework or class library used to develop COM components. This chapter
offers 11 concrete guidelines that help developers write code that is efficient, cor-
rect, and maintainable. Aspects of COM implementation discussed include ref-
erence counting, memory optimization, and type-system errors.

viii Preface

Apartments

Perhaps one of the most perplexing aspects of COM is its concept of an apart-
ment. Apartments are used to model concurrency in COM and do not have ana-
logues in most operating systems or languages. This chapter offers nine concrete
guidelines that help developers ensure that their objects operate properly in a
multithreaded environment. Aspects of apartments discussed include real-world
lock management, common marshaling errors, and life-cycle management.

Security

One of the few areas of COM that is more daunting than apartments is security.
Part of this is due to the aversion to security that is inherent in most developers,
and part is due to the fairly arcane and incomplete documentation that has
plagued the security interfaces of COM. This chapter offers five concrete guide-
lines that distill the security solution space of COM. Aspects of security discussed
include access control, authentication, and authorization.

Transactions

Many pages of print have been dedicated to Microsoft Transaction Server, but
precious few of them address the serious issues related to the new transactional
programming model implied by MTS. This chapter offers eight concrete pieces
of advice that will help make your MTS-based systems more efficient, scalable,
and correct. Topics discussed include the importance of interception, activity-
based concurrency management, and the dangers of relying on just-in-time acti-
vation as a primary mechanism for enhancing scalability.

Acknowledgments

First and foremost, Chris would like to thank his wife, Melissa, for supporting
him in his various extra-circular activities, including this book.

Thanks to J. Carter Shanklin and the Addison Wesley staff for providing the

ideal writing environment. I couldn’t imagine writing for another publisher.
Thanks to all of the reviewers for their thoughtful (and thorough) feedback.

Thanks to all my students as well as the contributing members of the DCOM
and ATL mailing lists. Whatever insight this book provides comes from dis-
cussing our mutual problems with COM.

Preface ix

Last but not least, thanks to my fellow authors for their hard work and diligence
in seeing this project through to the end. It is truly a pleasure and an honor to be,
included as an author with professionals of such caliber. ‘

Don would like to thank the three other Boxes that fill up his non-COM
lifestyle.

Thanks to my coauthors for sharing the load and waiting patiently for me to fin-
ish my bits and pieces (the hunger strike worked, guys).

A tremendous thanks to Scott Meyers for giving us his blessing to leverage' his
wildly successful format and apply it to a technology that completely butchers his
life’s work.

Thanks to all of my cohorts at DevelopMentor for tolerating another six months
of darkness while I delayed yet another book project.

Thanks to J. Carter Shanklin at Addison Wesley for creating a great and support-
ive environment.

Thanks to the various DCOM listers who have participated in a long but fun
conversation. This book in many ways represents an executive summary of the
megabytes of security bugs, MTS mysteries, and challenging IDL puzzles that
have been posted by hundreds of folks on the COM front lines.

A special thanks goes to the Microsoft folks who work on COM and Visual C++,
for all of the support over the years.

Keith would like to thank his family for putting up with all the late nights. The
joy they bring to my life is immeasurable.

Thanks to Don, Tim, and Chris, for thinking enough of me to extend an invita-
tion to participate in this important project.

Thanks to Mike Abercrombie and Don Box at DevelopMentor for fostering a
home where independent thought is nourished and the business model is based
on honesty and genuine concern for the community.

Thanks to everyone who participates in the often lengthy threads on the DCOM
list. That mail reflector has been incredibly useful in establishing a culture among

' Leverage is a nice-sounding euphemism used in the Windows development world, whose real
meaning should be obvious.

X Preface

COM developers, and from that culture has sprung forth a wealth of ideas, many
of which are captured in this book.

Thanks to Saji Abraham and Mike Nelson for their dedication to the COM

community.

Thanks, Carter, this book is so much better than it possibly could have been if
you had pressed us for a deadline.

And finally, thanks to all the students who have participated in my COM and se-
curity classes. Your comments, questions, and challenges never cease to drive me
toward a deeper understanding of the truth.

First and foremost, Tim would like to thank his coauthors for undertaking this
project and seeing it through to completion. As always, gentlemen, it’s been a
pleasure.

Also, thanks to friends and colleagues Alan Ewald, Owen Tallman, Fred Tibbitts,
Paul Rielly, everyone at DevelopMentor, students, and the participants on the
DCOM mailing list for listening to me go on and on about COM—nodding
sagely, laughing giddily, or screaming angrily as necessary.

A special thanks to Mike, Don, and Lorrie for suffering through the earliest days
of DM to produce an extraordinary environment for thinking.

And, of course, thanks to my family: Sarah for letting me wear a COM ring too,
Steve and Kiristin for reminding me about the true definition of success, Alan and
Chris for allowing me to interrupt endlessly to ask geeky questions, and Nikke
and Stephen Downes-Martin for accepting phone calls from any airport I hap-
pen to be in.

Finally, thank you]. Carter Shanklin and Addison Wesley for letting us do our
own thing.

Preface

Xi

Chris Sells
Portland, OR

August 1998
http://www.sellsbrothers.com

Don Box

Redondo Beach, CA

August 1998
http://www.develop.com/dbox

Keith Brown

Rolling Hills Estates, CA

August 1998
http://www.develop.com/kbrown

Tim Ewald

Nashua, NH

August 1998
http://www.develop.com/tjewald

Contents

Preface

Shifting from C++ to COM

1. Define your interfaces before you define your classes (and do it in IDL).
2. Design with distribution in mind.

3. Objects should not have their own user interface.

4. Beware the COM singleton.

5. Don't allow C++ exceptions to cross method boundaries.

Interfaces
6. Interfaces are syntax and loose semantics. Both are immutable.
7. Avoid E_NOTIMPL.
8. Prefer typed data to opaque data.
9. Avoid connection points.
10. Don'’t provide more than one implementation of the same interface on a
single object.
11. Typeless languages lose the benefits of COM.
12. Dual interfaces are a hack. Don't require peaple to implement them.
13. Choose the right array type (avoid open and varying arrays).
14. Avoid passing TUnknown as a statically typed object reference (use iid_is).
15. Avoid [in, out] parameters that contain pointers.
16. Be conscious of cyclic references (and the problems they cause).
17. Avoid wire marshal, transmit_as, call as, and cpp_quote.

Implementations

18. Code defensively.

19. Always initialize [out] parameters.

20. Don’t use interface pointers that have not been AddRef ’ ed

21. Use static_cast when bridging between the C++ type system and
the COM type system.

22. Smart interface pointers add at least as much complexity as they remove.

o

g
R WO N G~

31
31
36
38
43

47
52
57
60
65
68
72
76

81
81
85
90

98
101

iv Contents

23. Don't hand-optimize reference counting. 107
24. Implement enumerators using lazy evaluation. 109
25. Use flyweights where appropriate. 112
26. Avoid using tearoffs across apartment boundaries. 115
27. Be especially careful with BSTRs. 118
28. COM aggregation and COM containment are for identity tricks, not code reuse. ~ 120
Apartments 125
29. Don't access raw interface pointers across apartment boundaries. 125
30. When passing an interface pointer between one MTA thread and

another, use AddRef . 129
31. User-interface threads and objects must run in single-threaded apartments (STAs). 131
32. Avoid creating threads from an in-process server. 133
33. Beware the Free-Threaded Marshaler (FTM). 136
34. Beware physical locks in the MTA. 142
35. STAs may need locks too. 146
36. Avoid extant marshals on in-process objects. 151
37. Use CoDisconnectObject to inform the stub when you go

away prematurely. 154
Security 155
38. CoInitializeSecurity is your friend. Learn it, love it, call it. 155
39. Avoid As-Activator activation. 163
40. Avoid impersonation. 167
41. Use fine-grained authentication. 171
42. Use fine-grained access control. » 178
Transactions 183
43. Keep transactions as short as possible. 183
44. Always use SafeRef when handing out pointers to your own object. 185
45. Don't share object references across activity boundaries. 188
46. Beware of exposing object references from the middle of a transaction hierarchy. 191
47. Beware of committing a transaction implicitly. 194
48. Use nontransactional objects where appropriate. 195
49. Move nontrivial initialization to IObjectControl: :Activate. 198
50. Don'’t rely on JIT activation and ASAP deactivation to achieve scalability. 199
Epilogue 201
About the Authors 203

Index 205

Shifting from C++ to COM

Moving from pure C++ development to the world of COM can seem especially
constraining. Many of the language constructs you have come to know and love
are yanked from your arsenal and replaced with a whole new set of language con-
structs called attributes in a language that looks closer to C than C++. The mind-
set of a C++ developer is typically focused on implementing objects. It takes a
considerable amount of time before one’s focus shifts to thinking in terms of
components that communicate through request and response messages. This
chapter discusses several of the more important attitude shifts that are needed to
survive the transition from “100% pure” C++ to the stylized subset we have come
to know as the Component Object Model.

1. Define your interfaces before you define your classes
(and do it in IDL).

One of the most basic reflexes of a C++ programmer is to begin the coding phase
of a project in a “dot-H” file. It is here that the C++ programmer typically begins
defining both the public operations of his or her data types as well as their core
internal representations. When working on an exclusively C++-based project,
this is a completely reasonable approach. However, when working on a COM-
based project, this approach usually leads to pain and suffering.

The most fundamental concept in COM is that of separation of interface from
implementation. Although the C++ programming language supports this style of
programming, it has very litde explicit support for defining interfaces as separate
entities from the classes that implement them. Without such explicit support for
interfaces, it is easy to blur the distinction between interface and implementation.

2 Effective COM

It is common for novice COM developers to forget that interfaces are intended
to be abstract definitions of some functionality. This implies that the definition
of a COM interface should not betray implementation details of one particular
class that implements the interface. Consider the following C++ class definition:

class Person

long m_nAge;

long m_nSalary;

Person *m_pSpouse;

list <Person*> m_children;
public:

Person (void) ;

void Marry(Person& rspouse);

void RaiseSalary(long nAmount) ;

void Reproduce (void) ;

Person *GetSpouse(void) const;

long GetAge(void) const;

long GetSalary(void) const;

const list<Person*>& GetChildren(void) const;
};

This is a completely reasonable class definition; however, if it were used as the
starting point for a COM interface definition, the most direct mapping would
look like this:

DEFINE_GUID(IID_IPerson, 0x30929828, O0x5F86, 0x11d1l,
0xB3, Ox4E, 0x00, O0x60, 0x97, Ox5E, Ox6A, 0x6a);
DECLARE_INTERFACE_ (IPerson, IUnknown) {
STDMETHOD (QueryInterface) (THIS_ REFIID r,void**p)PURE;
STDMETHOD_ (ULONG, AddRef) (THIS) PURE;
STDMETHOD_ (ULONG, Release) (THIS) PURE;
STDMETHOD_ (void, Marry) (THIS_ IPerson *pSpouse) PURE;
STDMETHOD_ (void, RaiseSalary) (THIS_ long nAmt) PURE;
STDMETHOD_ (void, Reproduce) (THIS) PURE;
STDMETHOD_ (IPerson *, GetSpouse) (THIS) PURE;
STDMETHOD_ (long, GetAge) (THIS) PURE;
STDMETHOD_ (long, GetSalary) (THIS) PURE;
STDMETHOD_ (list<IPerson*> *, GetChildren) (THIS) PURE;
};

The DECLARE_INTERFACE_ macros are used to emphasize that this interface
definition is meant to appear in a C/C++ header file.

Shifting from C++ to COM 3

The first deficiency of this interface definition is that it uses a standard template
library (STL) list to return the collection of children. While this method is rea-
sonable in a closed single-binary system in which all constituent source code will
be compiled and linked as an atomic unit, this technique is fatal in COM. Since
in COM the component may be built with one compiler and used by client code
compiled with a different compiler, it is impossible to guarantee that both the
client and the object will agree on the representation of an STL list. Even if both
entities are compiled with the same vendor’s compiler, it is not guaranteed that
the same version of the STL is in use.’

A more obvious problem related to returning an STL list is that this interface po-
tentially betrays an implementation detail of the underlying class, namely, that it
stores its collection of children using an STL list. For the implementation shown
earlier, this is not an issue. However, if other class implementers wish to imple-
ment the IPerson interface, they too must store their children in STL lists or
create a new list every time the GetChildren method is called. Since STL lists
are not the most space-efficient representation for a collection, this constraint
imposes an undue burden on all implementations of ITPerson.

One last flaw related to data types has to do with the results of each method. The
definition of each of the IPerson methods uses the STDMETHOD__ macro that
allows the interface designer to indicate the physical result type of the method ex-
plicitly. Thus, the following method definition,

STDMETHOD_ (long, GetAge) (THIS) PURE;

will expand as follows once the C preprocessor performs its magic:

virtual long __ stdcall GetAge(void) = 0;

The problem with this method is that it does not return an HRESULT. As de-
tailed in Irem 2, COM overloads the physical result of the method to indicate
communication failures; since this method does not return an HRESULT, COM
has no way to inform the client of any communication errors that may occur.

None of the flaws noted previously would have occurred had the developer de-
fined the interface in COM’s Interface Definition Language (IDL). It is tempting
to look at IDL and think, Why must I master yet another language? This concern
is valid. Most developers older than age 25 have already mastered (at least) one
programming language and are reluctant to learn yet another syntax for writing
conditionals and loops. This reluctance is understandable, because every decade
new programming languages are produced that promise vast increases in pro-
grammer productivity but often turn out to be syntactic monstrosities.

" Many developers eschew their compiler’s STL implementation in favor of higher-performance
versions available from third-party vendors.

