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Preface

The aim of this book is to educate the readers regarding the various design aspects of PID
controllers. The design of PID controllers were first introduced in the market in 1939 and
is still considered as a challenging field that needs novel approaches for the formulation
of solutions for PID tuning complications while capturing the effects of noise and process
variations. The intensified complexity of novel applications in fields like microsystems
technology, dc motors, automotive applications, industry procedures, pneumatic mechanisms,
needs controllers that embody significant characteristics of the systems into their design like
system’s nonlinearities, disturbance rejection needs, model uncertainties, time delays and
performance criteria among others. This book aims to present distinct PID controller designs
for several contemporary technology applications in order to satisfy the requirements of a
wide audience of researchers, professionals and scholars interested in studying about the
progresses in PID controllers and associated topics.

All of the data presented henceforth, was collaborated in the wake of recent advancements
in the field. The aim of this book is to present the diversified developments from across the
globe in a comprehensible manner. The opinions expressed in each chapter belong solely to
the contributing authors. Their interpretations of the topics are the integral part of this book,
which I have carefully compiled for a better understanding of the readers.

At the end, I would like to thank all those who dedicated their time and efforts for the
successful completion of this book. I also wish to convey my gratitude towards my friends
and family who supported me at every step.

Editor
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Wavelet PID and Wavenet PID:
Theory and Applications

José Alberto Cruz Tolentino?, Alejandro Jarillo Silval, Luis Enrique Ramos
Velasco? and Omar Arturo Dominguez Ramirez?

YUniversidad de la Sierra Sur

2Univerisidad Politécnica de Pachuca
Universidad Auténoma del Estado de Hidalgo
Meéxico

1. Introduction

We introduce in this chapter a new area in PID controllers, which is called multiresolution
PID (MRPID). Basically, a MRPID controller uses wavelet theory for the decomposition of the
tracking error signal. We present a general error function in terms of partial errors which gives
us the various frequencies appearing in the general errors. Once we obtain the spectrum of
the error signal, we divide the error at frequencies that are weighted by gains proposed by the
designer. We can say that the MRPID is a generalization of conventional PID controller in the
sense that the error decomposition is not only limited to three terms.

The PID is the main controller used in the control process. However, the linear PID algorithm
might be difficult to be used with processes with complex dynamics such as those with large
dead time and highly nonlinear characteristics. The PID controller operation is based on
acting proportionally, integrally and derivative way over the error signal e(#), defined it as the
difference between the reference signal y,.s and the process output signal y(t), for generating
the control signal u(t) that manipulates the output of the process as desired, as shown in the
Fig. 2, where the constants kp k; and kp are the controller gains. There are several analytical
and experimental techniques to tune these gains (Astrom & Hagglund, 2007). One alternative
is auto-tuning online the gains as in (Cruz et al., 2010; O. Islas G6mez, 2011a; Sedighizadeh
& Rezazadeh, 2008a) where they use a wavelet neural networks to identify the plant and
compute these gain values, this approach has been applied in this chapter.

The chapter is organized as follows: a general overview of the wavelets and multiresolution
decomposition is given in Section 2. In Section 3 we preset some experimental results of the
close-loop system with the MRPID controller. The PID controller based on wavelet neural
network and experimental is given in Section 4, while the experimental results are given
in Section 5. Finally, the conclusions of the contribution about wavelet PID and wavenet
controllers are presented in Section 6.

2. PID controller based on wavelet theory and multiresolution analysis

2.1 Wavelet theory and multiresolution analysis

Here, we briefly summarize some results from the wavelet theory that are relevant to this
work, for it we use the notation presented in the Table 1. For more comprehensive discussion
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of wavelets and their applications in control, signal processing, see e.g., (Daubechies, 1992;
Hans, 2005; Mallat, 1989a;b; Parvez, 2003; Parvez & Gao, 2005; Vetterli & Kovacevi¢, 1995).

Y(t) |Mother wavelet function
¢, |Daughter wavelet function
W¢(a, b) |Continuous wavelet transform
We|a, b] |Discrete wavelet transform
< f,g >|Inner product between f and g
@  |Direct sum of subspaces
V L W |V is orthogonal to W
L%(R) |Vector space of all measurable, square
integrable functions
IR |Vector space of the real numbers
Z  |Set of all integers

Table 1. Notation

A wavelet is defined as an oscillatory wave ¢ of very short duration and satisfy the
admissibility condition (Daubechies, 1992), given by

¥(0) = [ le(t)dt = (1)

where ¥ is the Fourier transform of wavelet function ¢, the latter also called wavelet mother
function, the mathematical representation of some mother wavelet are shown in Table 2 and
their graphs are plotted in Fig. 1. Wavelet function ¢ is called the "mother wavelet" because
different wavelets generated from the expansion or contraction, and translation, they are
called "daughter wavelets", which have the mathematical representation given by:

b)) = =9 (50), a#0aber, @

where a is the dilation variable that allows for the expansions and contractions of the ¢ and b
is the translation variable and allows translate in time.

e Haar Wavelet e Mexican Hat Wavelet
> > 1
8. l = os P\r—/\/‘
2 4 o
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= * >
- g o
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Fig. 1. Graphics of the mother wavelets showed in Table 2.
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,if t € [0, 5]
Haar  |y(t)={ -1, if t€ (3,1]

0, otherwise

Mexican hat|y(t) = \% =i (1—2)el-2t)
Morlet |¢(t) = e g cos(5t)
Shannon |¢(t) = Sm( ) cos( Tt

Daubechies |P(y) = ):N lCN Tk
Cp N-1tk are bmomlal coefficients,

N is the order of the wavelet

fely s TT 3
T Sm(’z U(zﬁlw{ = 1))

if F<|wl<

Meyer |¢P(w) = e_\/f_n cos(% v (z{%'wl -1)),
if 4 <|w| <8

0, otherwise

v = a*(35 — 84a + 70a% — 20a°),
a€0,1]

Table 2. Some examples of common mother wavelets

There are two types of wavelet transform: continuous wavelet transform (CWT) and
discrete wavelet transform (DWT), whose mathematical definition are given by (3) and (4),
respectively (Daubechies, 1992):

Witab) = (s = 7= [ flow (57 a, ®
Wyla,b) = ﬁ /:: F(8) ¢ (E% - kb0> dt, @

for CWT, the expansion parameters a and translation b vary continuously on R, with the
restrictiona > 0. For DWT, the parameters @ and b are only discrete values: a = af', b = kboay',

where ag > 1, by and are fixed values. In both cases f € L?(R), i.e., a function that belongs to
the space of all square integrable functions.

In DWT, one of the most important feature is the multiresolution analysis (Mallat, 1989a;b).
Multiresolution analysis with a function f € L?(R), can be decomposed in the form of
successive approximations, using wavelet basis functions. The multiresolution analysis
consists of a sequence successive approximations of enclosed spaces, nested spaces {Vy :
N € Z} with the following properties (Daubechies, 1992):

. Nesting: Vy C VN4, VN EZ.

Closure: clos (Unez Vn) = L*(R).

Shrinking: (nez Vn = {0}

Multiresolution: f(n] € Vy <= f[2n] € Vy41 VN € Z.
Shifting: f[n] € Vy <= f[n—2"Nkl € Vy VN € Z.

U SN
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6. There exists a scaling function ¢ € Vj such that the integer shifts of ¢ form an orthonormal
basis for Vj, i.e.,
Vo = span{¢nk[n], N,k € Z},

where .
o] =27 22 Nn— k], )

forming an orthogonal basis of V{. Then for each V) exists additional space Wy that meets
the following conditions (Daubechies, 1992)

VN+1 = VN O Wy, (6)
VNLlWy =0, VN € Z, 7)

and is .
Yniln) =2"29p2"Nn—K, VN keZ, ®)

forming an orthogonal basis for Wy, i.e. at i[n] can generate the space Wy.

From the above we can say that the purpose of analysis multiresolution is to determine a
function f[n] by successive approximations, as

o0

N 00
finl=Y cnxdnpelnl+ Y. Y dpgtmilnl, 9)

k=—o0 m=1k=—o00
with

tnk= Y Flnlomel]

k=—o0

(10)

Where N is the level at which decomposes f[n] and ¢[n], {[n] are conjugate functions for ¢[n]
and [n], respectively. Multiresolution analysis, in addition to being intuitive and useful in
practice, form the basis of a mathematical framework for wavelets. One can decompose a
function a soft version and a residual, as we can see from (9), where the wavelet transform
decomposes a signal f[n] in one approach or trend coefficients ¢ and detail coefficients d
which, together with ¢[n] and ¢ [n], are the smoothed version and the residue, respectively.

The important thing here is that the decomposition of the f[n] for large enough value of N can
be approximated arbitrarily close to V. This is that 3 some € > 0 such that

[e]

Ifln] = X2 enxpniln]ll <e. (1)

k=—o0
The approach by the truncation of the wavelet decomposition can be approximated as:

00

flnl~ Y. cnxpnlnl- (12)

k=—c0
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This expression indicates that some fine components (high frequency) belonging to the
wavelet space Wy for the f[n] are removed and the components belonging to the coarse scale
space Vy are preserved to approximate the original function at a scale N. Then (12) tells us
that any function f[n] € L?(R) can be approximated by a finite linear combination.

2.2 Wavelet PID controller design

A classic control scheme consists of three basic blocks as shown in Fig. 2: the plant can be
affected by external perturbation P, the sensor measures, the variable of interest y, and finally
the controller makes the plant behaves in a predetermined manner, y,.r. One of the most
employed controller in the modern industry is a classical control Proportional, Integral and
Derivative, PID because its easy of implementation, requiring only basics testing for tuning
gains kp kj and kp (Astrém & Hagglund, 2007).

lP
e u

PID =
Controller = Flous

yref

Sensor s

I

Fig. 2. Scheme of a SISO system with a PID controller.

In general, a PID controller takes as input the error signal ¢ and acts on it to generate an output
control signal u, as

u = kpe +k /tedt+k i (13)
=&P I 0 D dt ’
where kp, k| y kp are the PID gains to be tuned, and e is the error signal which is defined as
€ =Yref — Y» (14)
The form of a discrete PID is (Visioli, 2006):
u(k) = u(k—1)+kp [e(k) —e(k —1)] + kre(k) + kp [e(k) —2e(k — 1) + e(k—2)],  (15)
whose transfer function is given by

u(z) _ T z+1 1(z-1)
e(z) kp+k12( )+kDT—Z y

and its operation is the same way that the continuous PID.

(16)

Taking the parameters kp, k; and kp of the PID, as adjustment variables, then (15) can be
described as

2
u(k) = u(k—1)+ Y _ kie(k — i), 17)
i=0
or equivalently



8 Design Aspects of PID Controllers

2
Au(k) = Y ke(k — i), (18)
i=0

where kg = kp +k; +kp, k1 = —kp — 2kp y ko = kp. From (18), we see that the control law
of a classic PID is a linear decomposition of the error, only that this decomposition is fixed,
that is, always has three terms, this makes the difference between the classic PID and the
MRPID, where here the number of decompositions can be infinite and even more than each
one is different scales of time-frequency, this means that the MRPID controller decomposes
the signal error e for high, low and intermediate frequencies, making use of multiresolution
analysis for the decomposition. Where the components of the error signal are computed using
(9) through a scheme of sub-band coding, as shown in Fig. 3.

@D e nfk] =D hf] =GD—2E

W CENS
e=cg SW d2k
m di,k

da,x (2 '3,k (13 "3,k D €M,

e
di,k 12 glk/ L

Fig. 3. Sub-band coding scheme for decomposition of the error signal e for N=3.

Thus each of these components are scaled with their respective gains and added together to
generate the control signal u, as follows:

u = Kyey + Kmyem, + -+ - +kiej + -+ + Kmy_,emy_, + Krer, (19)
u(k) = K Em(k), (20)
where
K= [KH KM] e Ki e KMN_1 KL]/ (21)
Em(k) = [en (k) em, (k) -+ ei(k) -+ emy_, (k) e (K)]7, (22)

where N is the level of the MRPID controller.

While a classical PID control has three parameters to be tuned kp, k; and kp, the MRPID
control has two or more parameters and the number of parameters depends on the level of
decomposition is applied to the signal error e. The schematic diagram of a plant using a
MRPID control is shown in Fig. 4.

As shown in Table 2, there are a number of different wavelets, the wavelet selection affects
the operation of the controller. Therefore, there are characteristics that should be taken into
account, such as:

* The type of system representation (continuous or discrete).



