g'ﬁm Education

R S
e ——————

wHFILIE

258 HUHT 577 5

(RIKR - SE7hR) —

swm Engineering

G HMJMJJJJ:}IJ S A ; proach

Roger S. Prssman

(%) Roger S. Pre
ML T W R ‘ ’ |

China Machine Press

B TIR smsmmnrs (EESTH - ETHR)

Software Engineering A Practitioner’s Approach (Seventh Edition)

Roger PressmanmSe)XBIPRM LS TR LEIER, ST XESRHFLTRE
ELEFPEBBGFRTFTERRARESSAFHRBRORFTFEAARANBEAR.
—— (IEEE Software)
BR—~ABAZRHDIAKREMT, RAFWHMTAALFTRAIE. APEeSATIFEH.
PIF. SIS EFTHR O R IRBFRKFRIE: “RHFTEEHA? CRAELEDD
27?7 Y BLABRSTERIAS,

—— (ACM Computing Reviews)
TEXH—BRW T ERKRE, RAAKPRIUTY, STFEKRIHHAFAITE, H

BB ERESEUE,
—#% H Amazon.com M iFi

AR R1B2ERITHEIRLE, —EZIRHFIRFNBEER, HABEREITENBXE LR
HIRRENERRFSEH, A30ERK, ENENERRE—EBRREE LA LTHENIZY, £E
FRAHIRAFZHELATRRONELL, EALEN RSN BRETROFXHES. BN, FEfT
BAERE T KEENFT,

FHELHESGH ., MENRRAARLIMMWNS EM, NELMNMATUNEELRN, BFE
WARFBER . ZRF7TRRELSAIABTEHFEARE, EFNRERX, RRTREAMNKZH “AHET
BER WERXE, FTREMRHKMEIE, BEHREANKETRAE,

HETROABRM TN TRS, IHEETRERFERAFEMA:

S—8a RHEE, METIHAEERMERET R,

SETES B, MATRAKRMTSRITAE, FNESREETUMLMREAE,

S REEE, ERE7TRPMEMOAR, BHRAKENR. RERIE, BRAURIERRTEE
FEHEANAHE,

FMES REMEEE, MES5TH, FEMEHNREREAXNEE,

FRBS RHETIESHRE, BEITNETHRREIREGERERORG TGS,

{E&EE I

Roger S. Pressman R##iTREENYHS TRERFANERDEOREAL, 0S5k, it
EARETIEIR, EEAR., #B. FEREFAMODBLTEERGTIESE, Pressmanti+Z£ 5618
EE, HRETRSEAXE, REESMTLHTNEEERA, SESHTULRAENERE, SEX—H
#8E5| (IEEE Software) #E#IManagerk¥ %8, Pressmanti+RABZAIFHE, BHEF ST
LW ERH, EREEHENHSACM), EEBRS5EFIEIFHES(EEE)ZEBANK R,

This edition is authorized for sale in the People's Republic of % i
China only, excluding Hong Kong, Macao SARs and Taiwan. all Educatlon
HRRUREFEARLNESEA (FEFEEE. RIENTH http://www.mheducation.com

REDEABEK) HHE. oo

ISBN 978-

ERRML . (010) 88378991, 88361066

WP MLE. (010) 68326294, 88379649, 68995259
BfaH. (010) 88379604

EEEM . hzjsi@hzbook.com

@27 = - %+ www.china-pub.com) 97787111 N31 8712
MR- - 4% 5 A e Effr: 75.005T

I h ._HMTDZ%M—HN._“\.R '.ntl (#K) Roger S. Pressman 3 _w

Bie
o) T 15X | X S e
b . B (yEEHTEH
If 5 4 . _
L =] 24 /%mAm% 4 China Eﬁﬂj_jm. Press

wo.qﬁsmq_m m:n_som—._—.—m A Practitioner’ w>t_u_,omo: a&%% m%:;i L

4R

=

=

7

BT

N
!

e

oL

LEE

- SBTHR)

(SR3ThR

Roger'S. Préssman:Software Engineering:A Practitioner’s Approach, Seventh
Edition (ISBN: 978-0-07-337597-7).

Copyright © 2010 by The McGraw-Hill Companies, Inc.

All Rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including
without limitation photocopying, recording, taping, or any database, information or
retrieval system, without the prior written permission of the publisher.

This authorized Bilingual edition is jointly published by McGraw-Hill
Education (Asia) and China Machine Press. This edition is authorized for sale in the
People’s Republic of China only, excluding Hong Kong, Macao SAR and Taiwan.

Copyright © 2010 by McGraw-Hill Education (Asia), a division of the
Singapore Branch of The McGraw-Hill Companies, Inc. and China Machine Press.

BT, A2 HRAFEBEEF T, x4 HRBEIE 4 5 LUE
FRARBRE RIS EE, BEETRTEEN, FH, XF, SoBEMEREE.
BRI TREN AL,

AFPOBUER BEET-B/R (EMH) BF HRA SFPUBK Tk iRt & 1F
HAR. WA SBRREFEARKMEREN (FRERE. RIFHNTER
KR&HE) #HE.

AL ©2010 i F %35 —A /R (EH) HF HRZ = SHUMR Tk HRAEFTA .

FHHEW A McGraw-HillA FPi hbr%E, TAREZELRHE.

£ T B AR b HERR
WAFTR, @5
FHEEME JLRHRARITES R

AHEEIDE. BF. 01-2009-4562

EBEHRSE (CIP) ¥ig
B TR: CHRENTHRAEIE (EXR - F7HR) / (£) ¥EHS
(Pressman, R. S.) 2. —Jb30: SR HAREE, 20109

(2SR E)
F 4R Software Engineering: A Practitioner’s Approach, Seventh Edition

ISBN 978-7-111-31871-2
I.gk- 0.3 NRETE-¥EX V.TP3ILS
i LA B S TR CIPR R B F (2010) B177825%

HUBE Tolk HH Rl 4 (4tm?ﬁﬁiiﬁ§ﬁ££kﬁ22% HRECAEES 100037)
FEGgE: FRMT

LT IRIMEN S5 PR 2 F1ED R

2010410 A % 1 kRS 1R EN R

150mm x 214mm - 28.875E[l5k

R3S, ISBN 978-7-111- 31871 2

EHr: 75.005¢ :

FUlaA S, AR, BT, B, WA R TR
ZHRhsk . (010) 88378991, 88361066

Hhek. (010) 68326294; 88379649; 68995259

Pefahik. (010) 88379604
EEEH : hzjsj@hzbook.com

HARE 8IS

XEE PR, RERKOPHEBWMES B EARRTE, FH
FEXEBRAFENES N SUREE TZHENRS, WERIENE
g, FEEERBEEEARRNATZERAKEN. MUK, ERlL
LS, XENELRAEHERERBERRLES, HELER S
Wi 2 WL AL) RN 5 B BF F B2 B AT &k, Bmi= AL HE
E1E, TIERTHRANTER, 81 TERHEE, BREGEHEAME,
X BAFENME, ErEHAKEE AR RS .

W, EL2RERBLR#NEZT, RENHEL LR RAE,
L AAWFERBEBY), X3HHEIEEFHRFEERILE,
HEHkE:; MELBEHNBRIREEETEE LEAEXERE, ERERFE
BAZ RN AREHIART, EEFRIEXEXTEIFERRENIL
TERBEMEBROSBEH DA T LZEBEE 2L, Bk, 53—t
B SMESE BB B R E U BB E F LR RS RRA# 7
M, h5HF#ER,. BIRREAHE —RAXFNLEZE,

PR Tk R EA TR EEIRE “WREABFEFRS. H1998
EFFER, BATRRE TIEEARE T8%E, BEEIMIFEM L. 2325
HIAWEE 1, Ffi15Pearson, McGraw-Hill, Elsevier, MIT, John Wiley &
Sons, Cengage ¥ttt F{EAMRA RN T RIFHIEAERR, MMbMIA
IS E Fh bt 8% H Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft,
Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, Donald E.
Knuth, John L. Hennessy, Larry L. PetersonZE K&K —H L HIER,
LA “HEHEHEEAS" AR, SHRE%>], HRESE. KEAL
HiEhE, hEAIL T XENBH ARG,

“UHEILEZEAE” HHRTHESI TERNIIZENR DR, H
WIIEXA RS TP EREBHES, TAFHETHEE T BiFmER
FLEs mEHIEELHYXEREMERENEE, ANTCEEAN

iv

KEFEFRERF. €4, “HREIFEAS" ELHR TEME
B, XEEEERETRLTREFVOM, H8F2EmRRANIEXH
MfSEZEHE, HEHR “SMFERAE" M4 kR bkl £ sk
REBUE B FHIF R PTR A

WEHIES . SBMEH . —RIEE, MHEOER. BANSRSE,
XEFRFERMNOELE T REMRIE. BETEILFRESERE LS
FHE XA ST E B S ERR BRI, BF FXEMIEILEM
FTRMEABMHESA—AFOBE, RMNOBIRRERE, mRBH
BERLERBATAFX—4AH B EERE) ., LEARYOGLEIMMIEE
MHEMNO TR HRURS THE, BRIWKAGZWT:

£ZFM Y. www.hzbook.com =
B FHR{E . hzjsj@hzbook.com = £
BREIE. (010) 88379604 Az Books |
BRI, AR FTERETT A @S E£EHF

HR B 4w F5 . 100037 EEHALRBERF S

When computer software succeeds—when it meets the needs of the people who use
it, when it performs flawlessly over a long period of time, when it is easy to modify
and even easier to use—it can and does change things for the better. But when software
fails—when its users are dissatisfied, when it is error prone, when it is difficult to change
and even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineer-
ing approach.

It has been almost three decades since the first edition of this book was written. During
that time, software engineering has evolved from an obscure idea practiced by a relatively
small number of zealots to a legitimate engineering discipline. Today, it is recognized as a
subject worthy of serious research, conscientious study, and tumultuous debate. Through-
out the industry, software engineer has replaced programmer as the job title of preference.
Software process models, software engineering methods, and software tools have been
adopted successfully across a broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate and controversy about the
true nature of the software engineering approach continue. The status of software engi-
neering is a study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The seventh edition of Software Engineering: A Practitioner’s Approach is intended to
serve as a guide to a maturing engineering discipline. Like the six editions that preceded it,
the seventh edition is intended for both students and practitioners, retaining its appeal as
a guide to the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

The seventh edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and important
software engineering processes and practices. In addition, a revised and updated “support
system,” illustrated in the figure, provides a comprehensive set of student, instructor, and
professional resources to complement the content of the book. These resources are pre-
sented as part of a website (www.mhhe.com/ pressman) specifically designed for Software
Engineering: A Practitioner’s Approach.

The Seventh Edition. The 32 chapters of the seventh edition have been reorganized into
five parts. This organization, which differs considerably from the sixth edition, has been
done to better compartmentalize topics and assist instructors who may not have the time
to complete the entire book in one term.

vi Preface

System for
SEPA, 7/e

Web resources
(1,000+ links)
Reference

Comprehensive case study

Part 1, The Process, presents a variety of different views of software process, consider-
ing all important process models and addressing the debate between prescriptive and
agile process philosophies. Part 2, Modeling, presents analysis and design methods with
an emphasis on object-oriented techniques and UML modeling. Pattern-based design and
design for Web applications are also considered. Part 3, Quality Management, presents the
concepts, procedures, techniques, and methods that enable a software team to assess
software quality, review software engineering work products, conduct SQA procedures,
and apply an effective testing strategy and tactics. In addition, formal modeling and veri-
fication methods are also considered. Part 4, Managing Software Projects, presents topics
that are relevant to those who plan, manage, and control a software development project.
Part 5, Advanced Topics, considers software process improvement and software engineer-
ing trends. Continuing in the tradition of past editions, a series of sidebars is used through-
out the book to present the trials and tribulations of a (fictional) software team and to
provide supplementary materials about methods and tools that are relevant to chapter
topics. Two new appendices provide brief tutorials on UML and object-oriented thinking
for those who may be unfamiliar with these important topics.

Preface vii

The five-part organization of the seventh edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “manage-
ment course” would stress Parts 1 and 4. By organizing the seventh edition in this way,
I'have attempted to provide an instructor with a number of teaching options. In every case,
the content of the seventh edition is complemented by the following elements of the SEPA,
7/e Support System.

Student Resources. A wide variety of student resources includes an extensive online
learning center encompassing chapter-by-chapter study guides, practice quizzes, prob-
lem solutions, and a variety of Web-based resources including software engineering
checklists, an evolving collection of “tiny tools,” a comprehensive case study, work prod-
uct templates, and many other resources. In addition, over 1000 categorized Web Refer-
ences allow a student to explore software engineering in greater detail and a Reference
Library with links to over 500 downloadable papers provides an in-depth source of
advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the seventh edition. These include a complete online Instructor’s Guide (also
downloadable) and supplementary teaching materials including a complete set of over
700 PowerPoint Slides that may be used for lectures, and a test bank. Of course, all
resources available for students (e.g., tiny tools, the Web References, the downloadable
Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents sug-
gestions for conducting various types of software engineering courses, recommendations
for a variety of software projects to be conducted in conjunction with a course, solutions
to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists, a
catalog of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an “adaptable process model” that provides a detailed task breakdown of
the software engineering process.

When coupled with its online support system, the seventh edition of Software Engi-
neering: A Practitioner’s Approach, provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the seven editions of Software Engineering: A Practi-
tioner’s Approach has been the longest continuing technical project of my life. Even when
the writing stops, information extracted from the technical literature continues to be
assimilated and organized, and criticism and suggestions from readers worldwide is eval-
uated and cataloged. For this reason, my thanks to the many authors of books, papers,
and articles (in both hardcopy and electronic media) who have provided me with addi-
tional insight, ideas, and commentary over nearly 30 years.

Special thanks go to Tim Lethbridge of the University of Ottawa, who assisted me in
the development of UML and OCL examples and developed the case study that accompa-
nies this book, and Dale Skrien of Colby College, who developed the UML tutorial in

viii Preface

Appendix 1. Their assistance and comments were invaluable. Special thanks also go to
Bruce Maxim of the University of Michigan-Dearborn, who assisted me in developing
much of the pedagogical website content that accompanies this book. Finally, I wish to
thank the reviewers of the seventh edition: Their in-depth comments and thoughtful
criticism have been invaluable.

Osman Balci, SK Jain,
Virginia Tech University National Institute of Technology Hamirpur
Max Fomitchey, Saeed Monemi,
Penn State University Cal Poly Pomona
Jerry (Zeyu) Gao, Ahmed Salem,
San Jose State University California State University
Guillermo Garcia, Vasudeva Varma,
Universidad Alfonso X Madrid T Hyderabad
Pablo Gervas,

Universidad Complutense de Madrid

The content of the seventh edition of Software Engineering: A Practitioner’s Approach
has been shaped by industry professionals, university professors, and students who have
used earlier editions of the book and have taken the time to communicate their sugges-
tions, criticisms, and ideas. My thanks to each of you. In addition, my personal thanks go
to our many industry clients worldwide, who certainly have taught me as much or more
than I could ever teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have grown
from boys to men. Their maturity, character, and success in the real world have been an
inspiration to me. Nothing has filled me with more pride. And finally, to Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still another
edition of “the book.”

Roger S. Pressman

ABOUT THE AUTHOR

oger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For almost four decades,
he has worked as a software engineer, a manager, a professor, an author, and a con-
sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development
of CAD/CAM systems for advanced engineering and manufacturing applications. He
has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut,
Dr. Pressman moved to academia where he became Bullard Associate Professor of
Computer Engineering at the University of Bridgeport and director of the university's
Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting
firm specializing in software engineering methods and training. He serves as principal
consultant and has designed and developed Essential Software Engineering, a complete
video curriculum in software engineering, and Process Advisor, a self-directed system
for software process improvement. Both products are used by thousands of companies
worldwide. More recently, he has worked in collaboration with EdistaLearning in India
to develop comprehensive Internet-based training in software engineering.

Dr. Pressman has written many technical papers, is a regular contributor to
industry periodicals, and is author of seven technical books. In addition to Software
Engineering: A Practitioner’s Approach, he has co-authored Web Engineering
(McGraw-Hill), one of the first books to apply a tailored set of software engineering
principles and practices to the development of Web-based systems and applications.
He has also written the award-winning A Manager's Guide to Software Engineering
(McGraw-Hill); Making Software Engineering Happen (Prentice Hall), the first book to
address the critical management problems associated with software process
improvement; and Software Shock (Dorset House), a treatment that focuses on soft-
ware and its impact on business and society. Dr. Pressman has been on the editorial
boards of a number of industry journals, and for many years, was editor of the
“Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He is a member of the [EEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa
Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.
An athlete for most of his life, he remains a serious tennis player (NTRP 4.5) and a
single-digit handicap golfer. In his spare time, he has written two novels, The Aymara
Bridge and The Puppeteer, and plans to begin work on another.

TABLE OF CONTENTS

Preface v
About the Author ix
CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 1

1.1 The Nature of Software 3
1.1 Defining Software 4
1.1.2 Software Application Domains 7
1.1.3 legacy Software 9

1.2 The Unique Nature of WebApps 10

1.3 Software Engineering 12

1.4 The Software Process 14

1.5 Software Engineering Practice 17
18] The Essence of Practice 17
1.5.2 General Principles 19

1.6 Software Myths 21

1.7 How It All Starts 24

1.8 Summary 25

PROBLEMS AND POINTS TO PONDER 25

FURTHER READINGS AND INFORMATION SOURCES 26

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 PROCESS MODELS 30

2.1 A Generic Process Model 31
2.1.1 Defining a Framework Activity 32
2.1.2 Identifying a Task Set 34
2/1.3 Process Patterns 35
2.2 Process Assessment and Improvement 37
2.3 Prescriptive Process Models 38
2.3.1 The Waterfall Model 39
232 Incremental Process Models 41
233 Evolutionary Process Models 42
234 Concurrent Models 48
2.35 A Final Word on Evolutionary Processes 49
2.4 Specialized Process Models 50
241 ComponentBased Development 50
2.4.2 The Formal Methods Model 51
243 AspectOriented Software Development 52
2.5 The Unified Process 53
2.5.1 A Brief History 54
252 Phases of the Unified Process 54
26 Personal and Team Process Models 56
2.6.1 Personal Software Process (PSP) 57
2.6.2 Team Software Process (TSP) 58
2.7 Process Technology 59
28 Product and Process 60

PART TWO

Conternts

2.9 Summary 61
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS AND INFORMATION SOURCES 63

CHAPTER 3 AGILE DEVELOPMENT 65

Xi

3.1 What Is Agilitye 67

3.2 Agility and the Cost of Change 67

3.3 Whatls an Agile Process? 68
3.3.1 Agility Principles 69
3.3.2 The Politics of Agile Development 70
833 Human Factors 71

34 Extreme Programming (XP) 72
3.4.1 XP Values 72
34.2 The XP Process 73
3.4.3 Industrial XP 77
344 The XP Debate 78

3.5 Other Agile Process Models 80
3.5.1 Adaptive Software Development [ASD) 81
352 Scrum 82
3.5.3 Dynamic Systems Development Method (DSDM) 84
354 Crystal 85
3.5.5 Feature Driven Development (FDD) 86
356 lean Software Development (LSD) 87
3.57 Agile Modeling (AM) 88
358 Agile Unified Process [AUP) 89

3.6 ATool Setfor the Agile Process 91

2.7 Summary 91

PROBLEMS AND POINTS TO PONDER 92

FURTHER READINGS AND INFORMATION SOURCES 93

MODELING 95

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 96

4.1 Software Engineering Knowledge 97

4.2 Core Principles 98
421 Principles That Guide Process 98
422 Principles That Guide Practice 99

4.3 Principles That Guide Each Framework Activity 101
4.3.1 Communication Principles 101
432 Planning Principles 103
433 Modeling Principles 105
4.3.4 Construction Principles 111
4.3.5 Deployment Principles 113

4.4 Summary 115

PROBLEMS AND POINTS TO PONDER 116

FURTHER READINGS AND INFORMATION SOURCES 116

CHAPTER 5 UNDERSTANDING REQUIREMENTS 119

81 Requirements Engineering 120
5.2 Establishing the Groundwork 125
521 Identifying Stakeholders 125

i Conternts

-

X

522 Recognizing Multiple Viewpoints 126
523 Working toward Collaboration 126
524 Asking theFirst Questions 127

53 Elicifing Requirements 128
531 Collaborative Requirements Gathering 128
532 Quality Function Deployment 131
533 Usage Scenarios 132
534 Elicitation Work Products 133

54 Developing Use Cases 133

5.5 Building the Requirements Model 138
5.5. Elements of the Requirements Model 139
552 Analysis Patierns 142

5.6 Negotfiating Requirements 142

5.7 Validating Requirements 144

58 Summary 145

PROBLEMS AND POINTS TO PONDER 145

FURTHER READINGS AND INFORMATION SOURCES 146

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION,
AND ANALYSIS CLASSES 148

6.1 Requirements Analysis 149
6.1.1 Overall Objectives and Philosophy 150
6.12 Analysis Rules of Thumb 151
6.).3 Domain Analysis 151
6.1.4 Requirements Modeling Approaches 153
6.2 ScenarioBased Modeling 154
6.2.1 Creating a Preliminary Use Case 155
6.2.2 Refining a Preliminary Use Case 158
623 Wiiting a Formal Use Case 159
6.3 UMLModels That Supplement the Use Case 161
6.3.1 Developing an Activity Diagram 161
6.3.2 Swimlane Diograms 162
6.4 Data Modeling Concepts 164
6.4.1 Data Obijects 164
6.4.2 Data Atrributes 164
643 Relationships 165
6.5 Class-Based Modeling 167
6.5.1 Identifying Analysis Classes 167
6.5.2 Specifying Attributes 171
6.5.3 Defining Operations 171
6.54 ClassResponsibility-Collaborator (CRC) Modeling 173
6.5.5 Associations and Dependencies 180
6.5.6 Analysis Packages 182
6.6 Summary 183
PROBLEMS AND POINTS TO PONDER 183
FURTHER READINGS AND INFORMATION SOURCES 1 84

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS,
AND WEBAPPS 186

7l Requirements Modeling Strategies 186
7.2 FlowOriented Modeling 187

Conternts

7.2.1 Creating a Data Flow Model 188
£.2.2 Creating a Control Flow Model 191
7.2.3 The Control Specification 191
724 The Process Specification 192

7.3 Creating a Behavioral Model 195
7.3.1 Identifying Events with the Use Case 195
732 Stale Representations 196

7.4 Patterns for Requirements Modeling 199
7.4.1 Discovering Analysis Patterns 200
7.4.2 A Requirements Pattern Example: Actuator-Sensor 200

7.5 Requirements Modeling for WWebApps 205
7.5.1 How Much Analysis Is Enough? 205
7.5.2 Requirements Modeling Input 206
7:6:3 Requirements Modeling Output 207
7.5.4 Confent Model for WebApps 207 |
7.5.5 Interaction Model for WebApps = 209
7.56 Functional Model for WebApps 210
787 Configuration Models for WebApps 211
7.5.8 Navigation Modeling 212

7.6 Summary 213

PROBLEMS AND POINTS TO PONDER 213

FURTHER READINGS AND INFORMATION SOURCES 214

CHAPTER 8 DESIGN CONCEPTS 215

8.1 Design within the Context of Software Engineering 216
8.2 The Design Process 219
8.2.1 Software Quality Guidelines and Atrributes 219
8.2.2 The Evolution of Software Design 221
8.3 Design Concepts 222
8.3.1 Abstraction 223
8.3.2 Architecture 223
8.3.3 Patterns 224
8.3.4 Separation of Concerns 225
8.3.5 Modularity 225
8.3.6 Information Hiding 226
8.37 Functional Independence 227
8.3.8 Refinement 228
8.3.9 Aspects 228
8.3.10 Refactoring 229
8.3.11 ObjectOriented Design Concepts 230
8.3.12 Design Classes 230
8.4 The Design Model 233
8.4.1 Data Design Elements 234
8.4.2 Architectural Design Elements 234
8.4.3 Interface Design Elements 235
8.4.4 Component-level Design Elements 237
8.4.5 Deployment-Level Design Elements 237
85 Summary 239
PROBLEMS AND POINTS TO PONDER 240
FURTHER READINGS AND INFORMATION SOURCES 240

Xiii

xiv Conternts

CHAPTER 9 ARCHITECTURAL DESIGN 242
9.1 Software Architecture 243
9.1.1 What Is Architecture? 243
9.1.2 Why s Architecture Importante 245
9.1.3 Architectural Descriptions 245
9.1.4 Architectural Decisions 246

9.2
9.3

9.4

9.5

9.6

9.7

Architectural Genres 246
Architectural Styles 249

9.3.1
9.3.2
9.3.3

A Brief Taxonomy of Architectural Styles 250
Architectural Patterns 253
Organization and Refinement 255

Architectural Design 255

9.4.1
9.4.2
9.4.3
9.44

Representing the System in Context 256
Defining Archetypes 257

Refining the Architecture info Components 258
Describing Instantiations of the System 260

Assessing Allernative Architectural Designs 261

9.5.1
9.5.2
9.5.3

An Architecture Trade-Off Analysis Method 262
Architectural Complexity 263
Architectural Description Languages 264

Architectural Mapping Using Data Flow 265

9.6.1
9.6.2

Transform Mapping 265
Refining the Architectural Design 272

Summary 273
PROBLEMS AND POINTS TO PONDER 274
FURTHER READINGS AND INFORMATION SOURCES 274

CHAPTER 10 COMPONENT-LEVEL DESIGN 276
10.1 Whatls a Componente 277
10.1.1 An ObjectOriented View 277
10.1.2 The Tradifional View 279
10.1.3 AProcessRelated View 281
10.2 Designing Class-Based Components 282
10.2.1 Basic Design Principles 282
10.2.2 Componentlevel Design Guidelines 285
10.2.3 Cohesion 286
10.24 Coupling 288
10.3 Conducting Componentlevel Design 290
10.4 Componentlevel Design for WebApps 296
10.4.1 Content Design at the Component Level 297
10.4.2 Functional Design at the Component level 297
10.5 Designing Traditional Components 298
10.5.1 Graphical Design Notation 299
10.5.2 Tabular Design Notation 300
10.5.3 Program Design language 301
10.6 ComponentBased Development 303
10.6.1 Domain Engineering 303
10.6.2 Component Qualification, Adaptation, and Composition 304
10.6.3 Analysis and Design for Reuse 306
10.6.4 Classifying and Refrieving Components 307

