*

(Z2IZhR - SB2hR)

T HE UNIFIED MODELING
LANGUAGE USER GUIDE
Second Edition

GRADY BOOCH

JAMES RUMBAUGH
IVAR JACOBSON

Covers UML 2.0

Thoroughly updated—
The ultimate tutorial 3

to the UML from JACOBSON
the original designers RUMBAUGH

Grady Booch
(%) James Rumbaugh ##

LA T Ak H ORR # Ilvar Jacobson

China Machine Press

- UMLAFIEm

" (SR - B24R)

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: The Unified Modeling Language User Guide, Second
Edition (ISBN 0-321-26797-4) by Grady Booch, James Rumbaugh, and Ivar Jacobson,
Copyright © 2005.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A A5 3 L HENAR tH Pearson Education Asia Ltd 32 4AUHLE Tl HARFE AR MR . K2 H
MRFEABEEA, RO AR E SR EENE,

BURFEARKMESEN (FREFEEE. ®IENTREAFESBHK) &
EET.

A 455 [M A Pearson Education (3543 EFHRER) B W%, TihiEERE
e,

MR, BIAR,
FHEEME LERHRIARITEEAH

| FHENEIZS . BF: 01-2006-1934
BHERRE (CIP) ¥R

UMLF P8RRI (B3R - $B20R) / (%) #ikk (Booch, G.) %%, —db3T. MR ILH
kR $k, 2006. 4

(2 HIFRR B)

F &3 The Unified Modeling Language User Guide, Second Edition

ISBN 7-111-18827-6

[.U- TO.47 O HRMRIES, UML-BREIZiF-%3r V. TP312
B ERR A E B CIPRIBE S (2006) 0298265

P Tl tHAR A (eI i 5 E X #1225 MBIK&FS 100037)
TG BiRE

ALFA L HERLEDR) ENR - Bl BrEIbm R ITH & 1T
20064E4 A % VR Lk ENRY

718mm x 1020mm 1/16 - 31E3k

EM: 59.005¢

WA, mAEI. B, 65, At RGEHiER
A F5ehek . (010) 68326294

LhRE B91E

NEEFLRE, FZERHPEEMNESHRNEANE, EEFEREARF
FEHENTURIUE T ZWHAORY, LERXBNES, FXEERREARBIHA
ZEALRKEH, BORE. EHLLAHES, EERNF LR SHETREEEEDH
&4, HELER+H T 2R LA R SOREEARANTS, hEkmiscER2 R
Fr#EZle, ROUBERITHRMHTERE, SRETHEROEDS, REEEANE, XAAEE
ENE, MM EHRSEE A WIS THRE .

L, ZRRELMEX#NEDT, REVHELSLERBIE, ELAABHE
kHZEY), XHMTENAEFTRAOHEFEELIE, WA, WL LEHvRissE
BERBLEAHERE, AREBBEARBHASRE. NEARZOHIRT, %
HE¥RSEREXITEB2RBRALHERARRENSHBEM AT SESEBLE 2L,
Hit, 5l#HE—#ESMEF BN RE BT E LR BEFRGEDER,
hRSHFEN. BIEHENHE—KAEHLHZE,

PR Tl AR R EE S R ARA TR EEIRE “HREAKETIRE. H19984
Trth, FEATRETIEESRET#E, BREIIMEBSM L. 23 LEHNTRRE S,
A1 5Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ i 53 & 4
MABRILTREFMVAEXR, NEMNAANKE T M4 P % Tanenbaum,
Stroustrup, Kernighan, Jim Gray% kUi &M —HBHMIER, LA “HEIFHZENS" %
SEFRHAR, #ikE%], HRARER. KEAQEAOHE, LEARTXENBH R
Figif,

“HEAREAS" HHRTESH TERNMEEHRRE RS, BRNET RIS
THEREEES, SRS FHEETRIENERMNIE, HEBHES AL
HEGESENEE, ANEERARBOPESERF. £4, “HENLREAE B2
HIR TEEAN &R, XEPEEEERHITRFNOM, HEFEERRANERK
MBS XL, Af—SH 5RBITT TRSAER,

BEXFRIENDS EEMBEMUENESTEL, HERSEIMFEILEHER
MEREBPEA—NDFHONB, Ak, SEATEMKSIHFBHGHE, £ “EEHRET"
MBHARZ THR=EA RS ENLEM . B “HELRZAE" 24, STRERNHK
B, MBMFREYH “SHFERBE" , R, SHHESEBFHRELESF “Schaum’s
Outlines” RFIHK “LFELMEIEFEI". ATRIEXZENBHRERYE, R
ATEFHAFBRIMEMIRSE, LB FEIETHEREE., L3 k%, Bk,
EPFHE k%, ERA%¥, FEREKRE, BRAE, PHIK%, FEBE LS. BR

iv

BTl K%, AEREAYE. PEARKE, tFEMERRKE. LRk, 41l
K%, BREBILAY, BMKE., BTk, FEREREBXRLMIFNEF.OFE
NEARZENBEHAAE T ENNE N SRNE L FEAR “TRESFTRET, AR
2 1L 20 RO L0 i B

X= %M%Eﬂﬂfﬁﬁﬁﬁﬁﬂjmﬁﬁi9f’ﬁﬁ*iM?E AHE NSRRI R AR
F IR ERITER., KEPiFLHsrHEAM. 1. T., Stanford, U.C. Berkeley, C. M.
U. SR LMAEFRA. AUEETERFIET. 30e8h. BERSL. HBIGRE
¥, BOEEE. &iFRE. KEGTE. BRY. @#E5MNE. EEEFFEAXZTRENL
Fik R ENEORE, TEHAARE —ANLHBAESRIUIFEZF. AONBEE=+
EMARE, ARCHSEFNLEREREA., XS 2EENamAIENESIZT,
EELBETREIEFNERPHEETAZ,

REHIES . @BMEH . —RiEE. PHEUER. BHRE, XEEHEER
1MWESE TRENRIE, HRMVBEERERE, MRENELERBITER X —
LM BRI EERD ., BEHOHRAEBRIMNMEERFSR A, EEATRWEMR
BXRBATTERBBRUEA TIRE, BINWKAFENT:

B, FHBf:: hzjsj@hzbook.com
BeARBIE: (010) 68995264

BeAdeht . LR AKX E T EREELS
HPEL ZRAD . 100037

ERIEEERE

v
(¥t B IRF)
b YR A T EK
BEF R#d XHE
b3 5% FRYF A

i TR 445 M &R he#E Aeik
JE ZoE %W e BA
618 LER 1 JE g &
m & A2 e AZ B 35 WA A=

To my loving wife, Jan, and my goddaughter, Elyse,
both of whom make me whole.

—Grady Booch

PREFACE

Goals

The Unified Modeling Language (UML) is a graphical language for visualiz-
ing, specifying, constructing, and documenting the artifacts of a software-
intensive system. The UML gives you a standard way to write a system’s blue-
prints, covering conceptual things such as business processes and system func-
tions, as well as concrete things such as classes written in a specific
programming language, database schemas, and reusable software components.

This book teaches you how to use the UML effectively.

This book covers UML version 2.0.

In this book, you will

s Learn what the UML is, what it is not, and why the UML is relevant to
the process of developing software-intensive systems.

m» Master the vocabulary, rules, and idioms of the UML and, in general,
learn how to “speak” the language effectively.

a Understand how to apply the UML to solve a number of common
modeling problems.

The user guide provides a reference to the use of specific UML features. How-
ever, it is not intended to be a comprehensive reference manual for the UML;
that is the focus of another book, The Unified Modeling Language Reference
Manual, Second Edition (Rumbaugh, Jacobson, Booch, Addison-Wesley,
2005).

The user guide describes a development process for use with the UML. How-
ever, it is not intended to provide a complete reference to that process; that is

viii

the focus of yet another book, The Unified Software Development Process
(Jacobson, Booch, Rumbaugh, Addison-Wesley, 1999).

Finally, this book provides hints and tips for using the UML to solve a number
of common modeling problems, but it does not teach you how to model. This
is similar to a user guide for a programming language that teaches you how to
use the language but does not teach you how to program.

Audience

The UML is applicable to anyone involved in the production, deployment, and
maintenance of software. The user guide is primarily directed to members of
the development team who create UML models. However, it is also suitable to
those who read them, working together to understand, build, test, and release a
software-intensive system. Although this encompasses almost every role in a
software development organization, the user guide is especially relevant to
analysts and end users (who specify the required structure and behavior of a
system), architects (who design systems that satisfy those requirements),
developers (who turn those architectures into executable code), quality assur-
ance personnel (who verify and validate the system’s structure and behavior),
librarians (who create and catalogue components), and project and program
managers (who generally wrestle with chaos, provide leadership and direction,
and orchestrate the resources necessary to deliver a successful system).

The user guide assumes a basic knowledge of object-oriented concepts. Expe-
rience in an object-oriented programming language or method is helpful but
not required.

How to Use This Book

For the developer approaching the UML for the first time, the user guide is best
read linearly. You should pay particular attention to Chapter 2, which presents
a conceptual model of the UML. All chapters are structured so that each,ihmlds
upon the content of the previous one, thus forming a linear progressxoﬁ%%

For the experienced developer seeking answers to common modeling probl >
using the UML, this book can be read in any order. You should pay particula L
attention to the common modeling problems presented in each chapter. ‘;E‘%’?

o

B
Es

ix

Organization and Special Features

The user guide is organized into seven parts:

Part 1 Getting Started

Part 2 Basic Structural Modeling

Part 3 Advanced Structural Modeling
Part 4 Basic Behavioral Modeling
Part 5 Advanced Behavioral Modeling
Part 6 Architectural Modeling

Part 7 Wrapping Up

The user guide contains two appendices: a summary of the UML notation and
a summary of the Rational Unified Process. A glossary of common terms is
also provided. An index follows.

Each chapter addresses the use of a specific UML feature, and most are orga-
nized into the following four sections:

1. Getting Started

2. Terms and Concepts

3. Common Modeling Techniques
4. Hints and Tips

The third section introduces and then solves a set of common modeling prob-
lems. To make it easy for you to browse the guide in search of these use cases
for the UML, each problem is identified by a distinct heading, as in the follow-
ing example.

Modeling Architectural Patterns ,

Each chapter begins with a summary of the features it covers, as in the follow-
ing example.

In thts chapu!r
m Active objects, processes and threads
Modeling multiple flows of control
® Modeling interprocess communication
® Building thread-safe abstractions

Components
are discussed
in Chapter 25.

Similarly, parenthetical comments and general guidance are set apart as notes,
as in the following example.

Note: Abstract operations map to what C++ calls pure virtual opera-
tions; leaf operations in the UML map to C++ nonvirtual operations.

The UML is semantically rich. Therefore, a presentation about one feature
may naturally involve another. In such cases, cross references are provided in
the left margin, as on this page.

Blue highlightseare used in figures to indicate explanations about a model, as
opposed to the model itself, which is always shown in black. Code is distin-
guished by displaying it in a monospace font, as in this example.

Acknowledgement. The authors wish to thank Bruce Douglass, Per Krol,
and Joaquin Miller for their assistance in reviewing the manuscript of the sec-
ond edition.

A Brief History of the UML

The first object-oriented language is generally acknowledged to be Simula-67,
developed by Dahl and Nygaard in Norway in 1967. This language never had a
large following, but its concepts were a major inspiration for later languages.
Smalltalk became widely available in the early 1980s, followed by other
object-oriented languages such as Objective C, C++, and Eiffel in the late
1980s. Object-oriented modeling languages appeared in the 1980s as method-
ologists, faced with a new genre of object-oriented programming languages
and increasingly complex applications, began to experiment with alternative
approaches to analysis and design. The number of object-oriented methods
increased from fewer than 10 to more than 50 during the period between 1989
and 1994. Many users of these methods had trouble finding a modeling lan-
guage that met their needs completely, thus fueling the so-called method wars.
A few methods gained prominence, including Booch’s method, Jacobson’s
OOSE (Object-Oriented Software Engineering), and Rumbaugh’s OMT
(Object Modeling Technique). Other important methods included Fusion,
Shlaer-Mellor, and Coad-Yourdon. Each of these was a complete method,
although each was recognized as having strengths and weaknesses. In simple
terms, the Booch method was particularly expressive during the design and
construction phases of projects; OOSE provided excellent support for use
cases as a way to drive requirements capture, analysis, and high-level design;
and OMT was most useful for analysis and data-intensive information systems.

© BEAEABEENR], W4 Sh%GHR, KBRSk, —gHE

X1

A critical mass of ideas started to form by the mid 1990s when Grady Booch
(Rational Software Corporation), James Rumbaugh (General Electric), Ivar
Jacobson (Objectory), and others began to adopt ideas from each other’s meth-
ods, which collectively were becoming recognized as the leading object-
oriented methods worldwide. As the primary authors of the Booch, OMT, and
OOSE methods, we were motivated to create a unified modeling language for
three reasons. First, our methods were already evolving toward each other
independently. It made sense to continue that evolution together rather than
apart, eliminating the potential for any unnecessary and gratuitous differences
that would further confuse users. Second, by unifying our methods, we could
bring some stability to the object-oriented marketplace, allowing projects to
settle on one mature modeling language and letting tool builders focus on
delivering more useful features. Third, we expected that our collaboration
would yield improvements for all three earlier methods, helping us to capture
lessons learned and to address problems that none of our methods previously
handled well.

As we began our unification, we established three goals for our work:

1. To model systems, from concept to executable artifact, using object-
oriented techniques

2. To address the issues of scale inherent in complex, mission-critical
systems

3. To create a modeling language usable by both humans and machines

Devising a language for use in object-oriented analysis and design is not unlike
designing a programming language. First, we had to constrain the problem:
Should the language encompass requirements specification? Should the lan-
guage be sufficient to permit visual programming? Second, we had to strike a
balance between expressiveness and simplicity. Too simple a language would
limit the breadth of problems that could be solved; too complex a language
would overwhelm the mortal developer. In the case of unifying existing meth-
ods, we also had to be sensitive to the installed base. Make too many changes
and we would confuse existing users; resist advancing the language and we
would miss the opportunity to engage a much broader set of users and to make
the language simpler. The UML definition strives to make the best trade-offs
in each of these areas.

The UML effort started officially in October 1994 when Rumbaugh joined
Booch at Rational. Our project’s initial focus was the unification of the Booch
and OMT methods. The version 0.8 draft of the Unified Method (as it was then
called) was released in October 1995. Around the same time, Jacobson joined
Rational and the scope of the UML project was expanded to incorporate
OOSE. Our efforts resulted in the release of the UML version 0.9 documents

Xii

in June 1996. Throughout 1996, we invited and received feedback from the
general software engineering community. During this time, it also became
clear that many software organizations saw the UML as strategic to their
business. We established a UML consortium, with several organizations will-
ing to dedicate resources to work toward a strong and complete UML defini-
tion. Those partners contributing to the UML 1.0 definition included Digital
Equipment Corporation, Hewlett-Packard, I-Logix, Intellicorp, IBM, ICON
Computing, MCI Systemhouse, Microsoft, Oracle, Rational, Texas Instru-
ments, and Unisys. This collaboration resulted in the UML 1.0, a modeling
language that was well-defined, expressive, powerful, and applicable to a wide
spectrum of problem domains. Mary Loomis was instrumental in convincing
the Object Management Group (OMG) to issue a request for proposals (RFP)
for a standard modeling language. UML 1.0 was offered for standardization to
the OMG in January 1997 in response to their RFP.

Between January 1997 and July 1997, the original group of partners was
expanded to include virtually all of the other submitters and contributors of the
original OMG response, including Andersen Consulting, Ericsson, ObjecTime
Limited, Platinum Technology, PTech, Reich Technologies, Softeam, Sterling
Software, and Taskon. A semantics task force was formed, led by Cris Kobryn
of MCI Systemhouse and administered by Ed Eykholt of Rational, to formal-
ize the UML specification and to integrate the UML with other standardization
efforts. A revised version of the UML (version 1.1) was offered to the OMG
for standardization in July 1997. In September 1997, this version was accepted
by the OMG Analysis and Design Task Force (ADTF) and the OMG Architec-
ture Board and then put up for vote by the entire OMG membership. UML 1.1
was adopted by the OMG on November 14, 1997.

For several years, UML was maintained by an OMG Revision Task Force,
which produced versions 1.3, 1.4, and 1.5. From 2000 to 2003, a new and
expanded set of partners produced an updated specification of UML, version
2.0. This version was reviewed for a year by a Finalization Task Force (FTF)
headed by Bran Selic of IBM, and the official version of UML 2.0 was adopted
by the OMG in early 2005. UML 2.0 is a major revision of UML 1 and
includes a large number of additional features. In addition, many changes were
made to previous constructs based on experience with the previous version.
The actual UML specification documents are found on the OMG Website at
www.omg.org.

UML is the work of a large number of individuals, and the ideas in it come
from a wide range of previous works. It would be a major historical research
project to reconstruct a complete list of sources, and even more difficult to
identify the many predecessors who have influenced UML in manners large
and small. As with all scientific research and engineering practice, UML is a
small hill atop a large mountain of previous experience.

CONTENTS

Preface Vil

Part 1 Getting Started 1

Chapter 1 Why We Model 3

The Importance of Modeling 4
Principles of Modeling 8
Object-Oriented Modeling 10

Chapter 2 Introducing the UML 13

An Overview of the UML 14

A Conceptual Model of the UML 17
Architecture 32

Software Development Life Cycle 34

Chapter 3 Hello, World! 37

Key Abstractions 38
Mechanisms 41
Artifacts 43

Part 2 Basic Structural Modeling 45

Chapter 4 Classes 47

Getting Started 47

Terms and Concepts 49

Common Modeling Techniques 54
Hints and Tips 59

Xiv

Part 3

Chapter 5 Relationships 61

Getting Started 62

Terms and Concepts 63

Common Modeling Techniques 69
Hints and Tips 74

Chapter 6 Common Mechanisms 75

Getting Started 76

Terms and Concepts 77

Common Modeling Techniques . 84
Hints and Tips 88

Chapter 7 Diagrams 89

Getting Started 90

Terms and Concepts 91

Common Modeling Techniques 96
Hints and Tips 101

Chapter 8 Class Diagrams 103

Getting Started 103

Terms and Concepts 105

Common Modeling Techniques 106
Hints and Tips 113

Advanced Structural Modeling 115

Chapter 9 Advanced Classes 117

Getting Started 117

Terms and Concepts 118

Common Modeling Techniques 130
Hints and Tips 131

Chapter 10 Advanced Relationships 133

Getting Started 134

Terms and Concepts 135

Common Modeling Techniques 148
Hints and Tips 149

Chapter 11 Interfaces, Types, and Roles 151

Getting Started 151

Terms and Concepts 153

Common Modeling Techniques 157
Hints and Tips 161

Chapter 12 Packages 163

Getting Started 164

Terms and Concepts 165

Common Modeling Techniques 170
Hints and Tips 174

Chapter 13 Instances 175

Getting Started 175

Termas and Concepts 176

Common Modeling Techniques 182
Hints and Tips 183

Chapter 14 Object Diagrams 185

Getting Started 185

Terms and Concepts 187

Common Modeling Techniques 188
Hints and Tips 191

Chapter 15 Components 193

Getting Started 193

Terms and Concepts 194

Common Modeling Techniques 203
Hints and Tips 206

Part 4 Basic Behavioral Modeling 207

Chapter 16 Interactions 209

Getting Started 210

Terms and Concepts 211

Common Modeling Techniques 221
Hints and Tips 222

xvi

Part 5

Chapter 17 Use Cases 225

Getting Started 225

Terms and Concepts 228

Common Modeling Techniques 236
Hints and Tips 237

Chapter 18 Use Case Diagrams 239

Getting Started 239

Terms and Concepts 241

Common Modeling Techniques' 242
Hints and Tips 248

Chapter 19 Interaction Diagrams 249

Getting Started 250

Terms and Concepts 251

Common Modeling Techniques 261
Hints and Tips 265

Chapter 20 Activity Diagrams 267

Getting Started 268

Terms and Concepts 269

Common Modeling Techniques 280
Hints and Tips 284

Advanced Behavioral Modeling 285

Chapter 21 Events and Signals 287

Getting Started 287

Terms and Concepts 288

Common Modeling Techniques 293
Hints and Tips 296

Chapter 22 State Machines 297

Getting Started 298

Terms and Concepts 300

Common Modeling Techniques 315
Hints and Tips 318

